
lying gene network from these data, through
a modeling stage, this network can be simu-
lated and the cell’s state (cancerous or heal-
thy) may be predicted according to the degree
of expression of the main regulating gene.
While it is still important to study genes and
proteins(1) individually, it is now becoming
possible, and useful, to investigate the struc-
ture and dynamics of biological systems by
way of global approaches. Since a genetic
network is more than an assembly of genes
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SIMULATION OF BIOLOGICAL SYSTEMS

It is now possible, with DNA arrays, to measure the expression of genes in a living
organism. Reconstructing from these data, by way of modeling, the genetic network thus
expressed would make it possible to simulate it and, for example, predict the behavior of a
cell or the phenotype of an individual, in other words the expression of his genes.
Numerical simulation can be seen to be equally crucial in the technological development of
the arrays themselves.

(1) See Box 1, in Modeling biological macro-
molecules.
(2) The set of characters that are observable in
an individual. For a cell, this will be the set of
manifest characters resulting from the expres-
sion of its genes (cell morphology, state of
health of the cell, etc.)

Micam® multiplexed arrays
(128-spot format), on silicon
wafer (right foreground) and
in individual assembly (left).

CEA/REA/Allard

Recently, DNA(1) arrays  (see Box 1) have
allowed simultaneous measurement of the
expression of thousands of genes in a cell
or a tissue (Figure 1).  For instance, in bakers’
yeast, it is now possible to analyze the
expression of the entire genome (about 6,300
genes); in humans, simultaneous analysis is
achieved for 20,000 genes, i.e. some two
thirds of the genome. This mass of informa-
tion could enable a better understanding of
the architecture of biochemical or genetic
networks within a cell (Figure 2) and the
logic of their regulating mechanisms, which
ultimately specify a cell’s behavior or the
production of a phenotype.(2) It is thus pos-
sible to measure the differential expression of
a major proportion of the genes and to com-
pare, for instance, cancerous cells and heal-
thy cells. If it is possible to deduce the under-



CLEFS CEA - No 47 - WINTER 2002-2003

75

Figure 1. Expression profile for the
complete genome of bakers’ yeast
obtained with a DNA array. Each
spot corresponds to one gene.
Induced genes (whose expression
is activated in a given biological
condition) show up in red,
repressed genes (whose expression
is reduced) in green, and invariant
genes in yellow.

What is a DNA chip?

electronics, nucleic acid chemistry, image analysis and bio-
informatics. To fabricate the chip, the DNA fragments are ampli-
fied by polymerization through the polymerase chain reac-
tion (PCR) technique and are then bound (by means of
electrostatic interactions) on a glass, polymer, silicon or metal
substrate to create hybridization sites.
During fabrication of the probe, the sample DNA is labeled

with a fluorophore. Once hybridization is effected, each spot
is excited by laser, the emitted fluorescence (the tell-tale sign
of hybridization) being detected through a fluorescence micro-
scope. Data analysis actually consists in analysis of an image,
allowing not only location, but also quantification of the fluo-
rescent signal emitted by each DNA fragment.
CEA, for its part, has developed, together with the CIS bio
International company, the so-called Micam® (Multiplexed
Integrated Chip for Advanced Microanalysis) electrochemical
addressing technique,(2) in which the chip comprises a silicon
substrate overlaid with a gold microelectrode at each spot.
This technology, intended for the high-performance chip mar-
ket, is to be marketed by the Apibio company (set up in 2001
by CEA and bioMérieux), which has exclusive rights to it.

A DNA chip, or DNA array, or biochip (or GeneChip) is a device
allowing in principle to detect the presence of a strand of DNA
– the molecule serving as support for the genetic information
in all living beings –, by pairing this strand with its comple-
mentary, the so-called probe, fixed on the chip.
Its principle, described at the end of the 1980s, is based on the
DNA’s property of hybridization, in other words the ability of
the bases in one strand of this DNA (thymine, adenine, cyto-
sine and guanine) to recognize spontaneously complementary
bases (thymine and adenine on the one hand, cytosine and gua-
nine on the other) and pair together like the two parts of a zip
fastener, thus forming a double helix.
The chip can thus identify a given sequence of nucleotides,
i.e. the chaining of the bases in a DNA fragment, by bringing it
into the presence of other strands whose sequence is known.
The technique can be used in many applications, from dia-
gnosis and screening of new medicines and their action sites,
to detection of contaminants and pollutants, through geno-

mics research (the study of mutations, in particular). A DNA
chip allows very fast visualization of differences in expression
among genes, even at the scale of a complete genome.
DNA chips nowadays have the ability to identify in a single
operation as many as tens of thousands, or even hundreds of
thousands, of DNA samples.
While the principle is simple, practical implementation involves
a combination of advanced technologies in the field of micro-

1

(1) See Box 1, in Modeling biological macromolecules.
(2) See note 3 in the main text.

and proteins, merely investigating the archi-
tecture of connections will not be sufficient
for an understanding of all its properties.
Evolution of the system over time is just as
important, and the components’ interaction
dynamics must also be examined.

Two basic principles

Understanding of a genetic network is
based on two principles.
The first concerns the genetic information
flow, which consists in specifying the rela-
tions existing from sequence space to func-

tion space. The genome contains informa-
tion that may serve to construct “objects” as
complex as… a human.  In terms of infor-
mation, the complexity of a fully developed
organism is held in the complexity of its
genome. But what are the codes that translate
a sequence into structure and function? These
codes must be represented in an understan-
dable form if they are to be implemented for
the construction of models. Biologists are
therefore seeking methods making it pos-
sible to find them, when starting from the
gene sequence and activity data gained by
means of DNA arrays.



Level of biochemical detail

Models may be highly abstract, such as
Boolean networks,(3) or conversely very
concrete, such as complete biochemical inter-
action models using kinetic parameters. The
former approach enables the analysis of very
large systems. The latter corresponds more
closely to biochemical reality; however,
being more complex, it remains restricted to
the study of small systems. The requirement
thus arises for methods having the capacity
to handle a very large amount of data glo-
bally, while offering an acceptable level of
detail, without going as far as the exact reac-
tion.
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Figure 2. Still highly incomplete,
this “subway map”-like diagram
rehearses the entire set of genes so
far known to be involved in
cancerization of a cell, together
with their interactions. It is
probable that genomics will enable
discovery of many others, whose
function is as yet unknown. One of
the goals, at stake in the simulation
of genetic networks, is to place
these genes on this network and
determine the nature of their
interactions with the rest of the
network (map established by
William C. Hahn, Robert A.
Weinberg and Claudia Bentley, and
reproduced with the authorization
of Nature Reviews Cancer, Vol. 2,
No. 5, May 2002; © 2002
Macmillan Magazines Ltd).

(3) Genetic network based on Boolean logic,
allowing considerable simplification of the inter-
actions between genes. Each gene is considered
as a binary variable (0 for an expressed gene,
1 otherwise) regulated by other genes accor-
ding to Boolean functions.

The second principle is investigation of com-
plex dynamic systems. Once the architecture
of a genetic network is understood, it
becomes possible to investigate its dynamics,
in other words the system’s behavior over
time under a variety of conditions. This pro-
blem is approached by measuring the varia-
tions over time of the genes’ expression. The
aim is to have the ability to predict the attrac-
tor of a genetic network, i.e. the stable phe-
notype of a cell, so that this network may be
directed, possibly some day, towards a cho-
sen attractor: from cancerous cell to benign
cell, from aging cell to juvenile cell.

Five parameters to take
on board

The dynamic analysis of a genetic net-
work requires models to be created. The
choice of model is often determined by
what question the experimenter seeks to
answer and the degree of abstraction he can
accept. Five parameters must be taken into
account.



Photonic modeling of DNA chips

In the design of DNA chips (or DNA arrays, as they are also called by biologists), the
complexity of the sensors’ optical and chemical architecture imposes a major numerical
simulation phase, centered on the fluorescent labeling technique.

On DNA chips (Box 1), recognition of the
hybridization (Box 1) of two comple-
mentary strands is effected by fluorescent
labeling(1) (Box 2). This highly sensitive
detection method is widely used in biology
and analytical chemistry. In the context of
DNA chip technological development, the
reproducibility and quantity of the signals
emitted by the spots is a factor to be taken
on board during the design phase, and in
chip readout. This concern is of paramount
importance, in that analysis of the amount
of fluorescence light emitted by each spot
on the biochip must be related to the num-

(4) Inhibition of a metabolic synthesis pathway
by its final product.
(5) Stabilization, in a living organism, of the
various physiological constants, in terms of
chemical composition, temperature and
volume.

Fluorescence

The principle of fluorescence is simple: a molecule (a fluorophore) absorbs a pho-
ton with a given energy and then re-emits, usually very quickly, a photon of lower
energy. This energy loss is accounted for by induced thermal agitation or by alte-
ration to the structure of the molecule.
Consequently, the color of emission light is different from that of the excitation:
this enables labeling, by separation of these colors by means of an appropriate
optical device (the simplest example being a prism).
Fluorescence detection is highly sensitive, since, thanks to advances made in
recent years with detectors and image capture devices, it is possible to make out
a single molecule.
Unfortunately, fluorescence is extremely sensitive to parameters such as the
fluorophores’ chemical environment, which can extinguish fluorescence (this
phenomenon is generally known as “quenching”), or excessive exposure to
excitation light, which may destroy the tags (“photobleaching” phenome-
non).

2

(1) Addition of a chemical group or a radioac-
tive atom to a molecule in order to monitor it
and locate it through this tag. 

Boolean or continuous?

Boolean models are based on the principle
that gene activation or repression response
is quite abrupt. Now, gene expression tends
to be on a continuum rather than binary.
Moreover, essential concepts for gene regu-
lation mechanisms cannot be represented by
Boolean variables. For example, retroinhi-
bition(4) stabilizes a network by allowing
control of a protein’s or a gene’s homeosta-
sis,(5) and reduces sensitivity to external
variations.  In a Boolean circuit, retroinhi-
bition will cause oscillation, rather than
increased stability.

Deterministic or stochastic?

An implicit assumption of continuous
models is that the fluctuations of a single
molecule may be ignored. However, there
are many examples in genetic networks sho-
wing that the presence of a single copy of
messenger RNA (mRNA)(1) can play an

essential role in certain biological processes
that cannot then be modeled by means of
purely deterministic models. Analysis of
mRNA, and protein, abundance and degra-
dation could enable identification of the genes
for which stochastic modeling would be
necessary.

The spatial dimension

The spatial dimension can play a major role
as regards intracellular compartmentalization
(nucleus, cytoplasm, mitochondria, mem-
brane), but equally for interactions between
cells. Most biological processes in multi-
cellular organisms (during development, for
instance) require interactions between various
types of cells. The space concept adds a
considerable degree of complexity to models.
Some information may be extracted from
“non-spatial” models, but it will eventually
be necessary to develop models that include
this dimension.

Data availability

An exhaustive biological model should
take into account RNA concentration, but
equally protein concentration, its location,
etc., since each molecular variable carries
some unique information on cell functioning.

The technological limitations of measure-
ment mean obtaining this information is a
complicated affair, even if constraints and
redundancy in biological networks do suggest
a possible way of understanding the operation
of a biological system without modeling all
of its parameters. Eventually, it will be impor-
tant to develop innovative high-throughput
measurement technology for the molecular
parameters mentioned above.
Of course, there is no point in simulating
genetic networks unless this allows predic-
tions to be made as to biological processes
and the evolution of diseases, and ultimately
the development of effective therapies for
the benefit of patients. ●

Xavier Gidrol
Évry Génopole (Essonne département)

CLEFS CEA - No 47 - WINTER 2002-2003

77



specific tools, to ensure availability of
reliable, sensitive products that can be made
industrially.

An analytical model
to understand trends

The aim is to model, in the simplest and
most relevant fashion, the behavior of fluo-
rescence on plane surfaces composed of a
substrate (microscope slide, silicon wafer(2))
that may be overlaid with thin mineral (e.g.
silica) or organic coatings. Such coatings
have the purpose, in particular, of ensuring
good DNA binding onto the surface of the
“biochip.”
The goal is to identify the parameters invol-
ved, in the first order, in the optical beha-
vior of biochips. For that purpose, fluoro-
phores (Box 1 and Box 2) are assimilated to
small light sources with the property of
having a particular orientation: dipoles. Light
exciting the fluorescent tag induces oscilla-
tion in the electron cloud, and the direction
of this oscillation is imposed by the mole-
cule’s atomic structure. Coupling between
source and surface is processed analytically
through a formalism based on an electro-
magnetic approach to light radiation: this
dipole may be assimilated to an antenna
emitting close to the ground, as the German
physicist Arnold Sommerfeld did, some…
90 years ago!
This preliminary study enabled researchers to
decouple light emission phenomena related
to the biochip’s optical and geometric cha-
racteristics from effects related to its chemi-
cal and biological environment. Observation
of the signals emitted by biochips fabrica-
ted on glass or silicon was able to corrobo-
rate this.

Predicting signals
on complex systems

The technological evolution of biochips
is tending more and more markedly towards
complex microsystems. Ever-increasing
demand for miniaturization, and integration
of such functions as spot addressing by
CMOS(3) transistors (Micam® technology)
is pushing this through. Understanding and
predicting fluorescence signals on such com-
ponents becomes a task significantly more
difficult than for conventional chips. Inves-
tigation of fluorescence characteristics in
the vicinity of many materials on structu-
red surfaces, owing to the complexity of the
problem, calls for a numerical approach. To
meet this requirement, CEA researchers
have produced a simulation tool allowing
the photonic balance sheet of a biochip to be
drawn up: they resolve, with no approxi-
mations, the electromagnetism equations
describing the interaction of the fluorophore,
still assimilated to a dipole, for any envi-
ronment. 
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Figure 1. Analysis of fluorescence
emitted on a Lightscan® track. The
figure at left shows the intensity of
fluorescent light (logarithmic
scale) in the structure with the
geometry represented at right. 

(2) Thin slice of material (usually silicon) on
which integrated circuits and other microelec-
tronic components and devices are fabricated
before they are cut out.
(3) On MICAM®-type biochips, to each contact
stud is associated a CMOS transistor (high-den-
sity integrated circuit using both N- and P-type
transistors, allowing them to use practically no
energy when not switching). It is then possible
to activate them, and, through a phenomenon
similar to an electrodeposition reaction, to posi-
tion specifically on these studs the required
DNA strands.

ber of hybridized DNA strands, in order to
determine the expression rate of the genes
to be analyzed. Although an analytical
model allows an understanding of the phy-
sics of the problem, the complexity of the
optical and chemical architecture of the
sensors to be designed means a major
numerical simulation phase is necessary
(see Box A, What is a numerical simula-
tion?). This derives its information from
measurement campaigns carried out with
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Figure 2. Comparison between
theory and experiment for the
intensity of light emitted by DNA
biochips (fabricated on a silicon
substrate coated with a thin layer
of silica a few hundred
nanometers thick) as a function
of measurement angle. The curves
correspond to an analysis of
fluorescent light polarization
along two orthogonal directions
("s" and "p") after illuminating the
biochip under light exhibiting
rectilinear polarization along
these two directions.

Application to a concrete
technological case

One major application of this tool was
modeling the behavior of fluorescence on
Lightscan® biochips jointly developed by
the bioMérieux company and CEA’s Elec-
tronics and Information Technology Labo-
ratory (Leti). This system boils down to
producing a biochip scanner inspired…
from a compact disk player, a solution
which allows cost reductions by a factor of
5–10, compared to a conventional device.
Like the compact disk, the biochips must
present tracks, so as to allow very exact
positioning of the pickup head as it is tra-
versed. Scientists have thus analyzed the
behavior of fluorescence on the tracks of
these biochips, which thus feature a struc-
turing of the glass (a few tens of nanome-
ters deep over a width of several microns)

(4) A goniofluorimeter (neologism) serves to
determine fluorescent light intensity for a given
direction in space. The device developed at
CEA–Leti also allows analysis of the polariza-
tion state of fluorescent light.
(5) The theory of polarization allows a des-
cription of the orientation (in terms of ampli-
tude and variation over time) of the electrical
field vector as it describes a light vibration. In
the case of fluorescence, a study of light pola-
rization provides a means of analyzing pheno-
mena such as the molecule’s change in structure
between excitation and re-emission of light.

on which a thin layer, a few tens of nano-
meters thick, is deposited (Figure 1). Pho-
tonic simulation shows that light emitted by
the fluorophore is trapped in the thin layer
in the form of guided waves (as in optical
fibers) and partly released at the level of the
structures.

An indispensable
experimental approach

Modeling alone cannot guarantee mastery
of technological processes. It is indispen-
sable to characterize their outcomes with a
dedicated metrological tool. Development
of a goniofluorimeter(4) (Figure 2) allowed,
in this case, validation of the simulation
work. Critical examination of the radiation
patterns measured under fluorescence, taking
into account the polarization effects of
light,(5) led to a reconsideration of the ana-
lytical approach and improved modeling.
Researchers now have an optical characte-
rization platform enabling them to consider
a quantification approach and to suggest fluo-
rescence standards.
There still remains for them to take on board
energy-coupling phenomena between the
fluorophore and incident radiation, and envi-
ronmental phenomena such as “photobleach-
ing” or “quenching” (Box 2). ●

Stéphane Gétin
Technological Research Division

CEA Grenoble Center
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What is a numerical simulation?                           A

Numerical simulation consists in reproducing, through com-
putation, a system’s operation, described at a prior stage by an
ensemble of models. It relies on specific mathematical and com-
putational methods. The main stages involved in carrying out an
investigation by means of numerical simulation are practices
common to many sectors of research and industry, in particular
nuclear engineering, aerospace or automotive.
At every point of the “object” considered, a number of physi-
cal quantities (velocity, temperature…) describe the state and
evolution of the system being investigated. These are not inde-
pendent, being linked and governed by equations, generally
partial differential equations. These equations are the
expression in mathematical terms of the physical laws mode-
ling the object’s behavior. Simulating the latter’s state is to
determine – at every point, ideally – the numerical values for
its parameters. As there is an infinite number of points, and
thus an infinite number of values to be calculated, this goal is
unattainable (except in some very special cases, where the
initial equations may be solved by analytical formulae). A natu-
ral approximation hence consists in considering only a finite
number of points. The parameter values to be computed are
thus finite in number, and the operations required become
manageable, thanks to the computer. The actual number of
points processed will depend, of course, on computational
power: the greater the number, the better the object’s des-
cription will ultimately be. The basis of parameter computation,
as of numerical simulation, is thus the reduction of the infi-
nite to the finite: discretization.

How exactly does one operate, starting from the model’s mathe-
matical equations? Two methods are very commonly used, being
representative, respectively, of deterministic computation

methods, resolving the equations governing the processes inves-
tigated after discretization of the variables, and methods of sta-

tistical or probabilistic calculus.
The principle of the former, known as the finite-volume method,
dates from before the time of computer utilization. Each of the
object’s points is simply assimilated to a small elementary volume
(a cube, for instance), hence the finite-volume tag. Plasma is
thus considered as a set or lattice of contiguous volumes, which,
by analogy to the makeup of netting, will be referred to as a
mesh. The parameters for the object’s state are now defined in
each mesh cell. For each one of these, by reformulating the
model’s mathematical equations in terms of volume averages, it
will then be possible to build up algebraic relations between
the parameters for one cell and those of its neighbors. In total,
there will be as many relations as there are unknown parameters,
and it will be up to the computer to resolve the system of rela-
tions obtained. For that purpose, it will be necessary to turn to
the techniques of numerical analysis, and to program specific
algorithms.
The rising power of computers has allowed an increasing fine-
ness of discretization, making it possible to go from a few tens of
cells in the 1960s to several tens of thousands in the 1980s, through
to millions in the 1990s, and up to some ten billion cells nowadays
(Tera machine at CEA’s Military Applications Division), a figure
that should increase tenfold by the end of the decade.

Example of an image from
a 2D simulation of instabilities,

carried out with CEA’s Tera
supercomputer. Computation

involved adaptive meshing,
featuring finer resolution in the

areas where processes are at their
most complex.

CEA



CLEFS CEA - No 47 - WINTER 2002-2003

11

A

A refinement of meshing, adaptive remeshing, consists in adjus-
ting cell size according to conditions, for example by making
them smaller and more densely packed at the interfaces between
two environments, where physical processes are most complex,
or where variations are greatest.
The finite-volume method can be applied to highly diverse phy-
sical and mathematical situations. It allows any shape of mesh
cell (cube, hexahedron, tetrahedron…), and the mesh may be
altered in the course of computation, according to geometric
or physical criteria. Finally, it is easy to implement in the
context of parallel computers (see Box B, Computational

resources for high-performance numerical computa-

tion), as the mesh may be subjected to partitioning for the
purposes of computation on this type of machine (example:
Figure B).
Also included in this same group are the finite-difference

method, a special case of the finite-volume method where cell
walls are orthogonal, and the finite-element method, where a
variety of cell types may be juxtaposed.
The second major method, the so-called Monte Carlo method,
is particularly suited to the simulation of particle transport, for
example of neutrons or photons in a plasma (see Simulations

in particle physics). This kind of transport is in fact charac-
terized by a succession of stages, where each particle may
be subject to a variety of events (diffusion, absorption,
emission…) that are possible a priori. Elementary probabili-
ties for each of these events are known individually, for
each particle.
It is then a natural move to assimilate a point in the plasma to a
particle. A set of particles, finite in number, will form a repre-
sentative sample of the infinity of particles in the plasma, as for
a statistical survey. From one stage to the next, the sample’s evo-
lution will be determined by random draws (hence the method’s
name). The effectiveness of the method, implemented in Los
Alamos as early as the 1940s, is of course dependent on the sta-
tistical quality of the random draws. There are, for just this pur-
pose, random-number methods available, well suited to com-
puter processing.

Finite-volume and Monte Carlo methods have been, and still are,
the occasion for many mathematical investigations. These stu-
dies are devoted, in particular, to narrowing down these methods’
convergence, i.e. the manner in which approximation precision
varies with cell or particle number. This issue arises naturally,
when confronting results from numerical simulation to experi-
mental findings.

3D simulation carried out with the Tera supercomputer, set up at the
end of 2001 at CEA’s DAM-Île de France Center, at Bruyères-le-Châtel
(Essonne département).

CEA

How does a numerical simulation proceed?

Reference is often made to numerical experiments, to emphasize
the analogy between performing a numerical simulation and car-
rying out a physical experiment.
In short, the latter makes use of an experimental setup, configur-
ed in accordance with initial conditions (for temperature, pres-
sure…) and control parameters (duration of the experiment, of
measurements…). In the course of the experiment, the setup
yields measurement points, which are recorded. These records are
then analyzed and interpreted.
In a numerical simulation, the experimental setup consists in an
ensemble of computational programs, run on computers. The
computation codes, or software programs, are the expression,
via numerical algorithms, of the mathematical formulations of
the physical models being investigated. Prior to computation,
and subsequent to it, environment software programs manage
a number of complex operations for the preparation of compu-
tations and analysis of the results.
The initial data for the simulation will comprise, first of all, the deli-
neation of the computation domain – on the basis of an approxi-
mate representation of the geometric shapes (produced by means
of drafting and CAD [computer-assisted design] software) –, fol-

lowed by discretization of this computation domain over a mesh,
as well as the values for the physical parameters over that mesh,
and the control parameters to ensure proper running of the pro-
grams… All these data (produced and managed by the environ-
ment software programs) will be taken up and verified by the
codes. The actual results from the computations, i.e. the nume-
rical values for the physical parameters, will be saved on the fly.
In fact, a specific protocol will structure the computer-generated
information, to form it into a numerical database.
A complete protocol organizes the electronic exchange of requi-
red information (dimensions, in particular) in accordance with pre-
defined formats: modeler,(1) mesher,(2) mesh partitioner, com-

(1) The modeler is a tool enabling the generation and manipulation of points,
curves and surfaces, for the purposes, for example, of mesh generation.
(2) The geometric shapes of a mesh are described by sets of points
connected by curves and surfaces (Bézier curves and surfaces, for
instance), representing its boundaries.
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The example of a thermalhydraulics computation

Implementation of a numerical simulation protocol may be illus-
trated by the work carried out by the team developing the ther-

malhydraulics computation software Trio U. This work was carried
out in the context of a study conducted in collaboration with the
French Radiological Protection and Nuclear Safety Institute (IRSN:
Institut de radioprotection et de sûreté nucléaire). The aim was to
obtain very accurate data to provide engineers with wall heat-stress
values for the components of a pressurized-water reactor in case
of a major accident involving turbulent natural circulation of hot
gases. This investigation requires simultaneous modeling of large-
scale “system” effects and of small-scale turbulent processes (see
Box F, Modeling and simulation of turbulent flows).
This begins with specification of the overall computation model
(Figure A), followed by production of the CAD model and cor-
responding mesh with commercial software programs (Figure
B). Meshes of over five million cells require use of powerful graph-
ics stations. In this example, the mesh for a steam generator
(Figures C and D) has been partitioned to parcel out computa-
tion over eight processors on one of CEA’s parallel computers:
each color stands for a zone assigned to a specific processor. The
computations, whose boundary conditions are provided by way
of a “system” computation (Icare–Cathare), yield results which
it is up to the specialists to interpret. In this case, visualization
on graphics stations of the instantaneous values of the velocity field
show the impact of a hot plume on the steam generator’s tube-
plate (section of the velocity field, at left on Figure E), and ins-
tantaneous temperature in the water box (at right).

Figure A. Overall
computation
domain,
including part
of the reactor
vessel (shown in
red), the outlet
pipe (hot leg, in
light blue), steam
generator (dark
blue), and
pressurizer
(green).

putation codes, visualization and analysis software programs.
Sensitivity studies regarding the results (sensitivity to meshes
and models) form part of the numerical “experiments.”
On completion of computation (numerical resolution of the equa-
tions describing the physical processes occurring in each cell),
analysis of the results by specialists will rely on use of the numer-
ical database. This will involve a number of stages: selective extra-
ction of data (according to the physical parameter of interest)
and visualization, and data extraction and transfer for the pur-
poses of computing and visualizing diagnostics.
This parallel between performing a computation case for a numer-
ical experiment and carrying out a physical experiment does not
end there: the numerical results will be compared to the exper-
imental findings. This comparative analysis, carried out on the

basis of standardized quantitative criteria, will make demands
on both the experience and skill of engineers, physicists, and
mathematicians. Its will result in further improvements to physical
models and simulation software programs.

Bruno Scheurer

Military Applications Division
CEA DAM-Ile de France Center

Frederic Ducros and Ulrich Bieder

Nuclear Energy Division
CEA Grenoble Center



CLEFS CEA - No 47 - WINTER 2002-2003

13

A

Figures C and D.
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1.10.103

Figure E.

Figure B. CAD model
of the hot leg of the
reactor vessel outlet
(left) and unstructured
mesh for it (right).
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Computational resources                                B

for high-performance numerical simulation

Carrying out more accurate numerical simulations requires the use
of more complex physical and numerical models applied to more
detailed descriptions of the simulated objects (see Box A, What is

a numerical simulation?). All this requires advances in the area
of simulation software but also a considerable increase in the capa-
city of the computer systems on which the software runs.

Scalar and vector processors
The key element of the computer is the processor, which is the
basic unit that executes a program to carry out a computation.
There are two main types of processors, scalar processors and
vector processors. The former type carries out operations on ele-
mentary (scalar) numbers, for instance the addition of two num-
bers. The second type carries out operations on arrays of numbers
(vectors), for example adding elementwise the numbers belonging
to two sets of 500 elements. For this reason, they are particularly
well suited to numerical simulation: when executing an opera-
tion of this type, a vector processor can operate at a rate close to
its maximum (peak) performance. The same operation with a
scalar processor requires many independent operations (opera-
ting one vector element at a time) executed at a rate well below
its peak rate. The main advantage of scalar processors is their
price: these are general-purpose microprocessors whose design
and production costs can be written-down across broad markets.

Strengths and constraints of parallelism
Recent computers allow high performances partly by using a
higher operating frequency, partly by trying to carry out seve-
ral operations simultaneously: this is a first level of paralle-

lism. The speeding up in frequency is bounded by develop-

ments in microelectronics technology, whereas interdepen-
dency between the instructions to be carried out by the pro-
cessor limits the amount of parallelism that is possible. Simul-
taneous use of several processors is a second level of
parallelism allowing better performance, provided programs
able to take advantage of this are available. Whereas parallelism
at processor level is automatic, parallelism between processors

in a parallel computer must be taken into account by the pro-
grammer, who has to split his program into independent parts
and make provisions for the necessary communication bet-
ween them. Often, this is done by partitioning the domain on
which the computation is done. Each processor simulates the
behavior of one domain and regular communications between
processors ensure consistency for the overall computation. To
achieve an efficient parallel program, a balanced share of the
workload must be ensured among the individual processors
and efforts must be made to limit communications costs.

The various architectures

A variety of equipment types are used for numerical simulation.
From their desktop computer where they prepare computations
and analyze the results, users access shared computation, sto-
rage and visualization resources far more powerful than their
own. All of these machines are connected by networks, enabling
information to circulate between them at rates compatible with
the volume of data produced, which can be as much as 1 terabyte

(1 TB = 1012 bytes) of data for one single simulation.
The most powerful computers are generally referred to as super-

computers. They currently attain capabilities counted in tera-

flops (1 Tflops = 1012 floating-point operations per second).
Currently, there are three main types of super-
computers: vector supercomputers, clusters of
mini-computers with shared memory, and clus-
ters of PCs (standard home computers). The
choice between these architectures largely
depends on the intended applications and uses.
Vector supercomputers have very-high-perfor-
mance processors but it is difficult to increase
their computing performance by adding pro-
cessors. PC clusters are inexpensive but poorly
suited to environments where many users per-
form numerous large-scale computations (in
terms of memory and input/output).
It is mainly for these reasons that CEA’s Mili-
tary Applications Division (DAM) has choosen
for its Simulation Program (see The Simula-

tion Program: weapons assurance without

nuclear testing) architectures of the shared-
memory mini-computer cluster type, also
known as clusters of SMPs (symmetric multi-
processing). Such a system uses as a basic buil-
ding block a mini-computer featuring several
microprocessors sharing a common memory
(see Figure). As these mini-computers are in
widespread use in a variety of fields, ranging
from banks to web servers through design
offices, they offer an excellent perfor-
mance/price ratio. These basic “blocks” (also
known as nodes) are connected by a high-per-

Installed at CEA (DAM-Ile de France Center) in December 2001, the TERA machine designed
by Compaq (now HP) has for its basic element a mini-computer with 4 x 1-GHz processors
sharing 4 GB of memory and giving a total performance of 8 Gflops. These basic elements are
interconnected through a fast network designed by Quadrics Ltd. A synchronization
operation across all 2,560 processors is completed in under 25 microseconds. The overall file
system offers 50 terabytes of storage space for input/output with an aggregate bandwidth of
7.5 GB/s.
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Figure. Architecture of an “SMP-cluster” type machine. At left, the general architecture (I/O = input/output), on the right, that of a node with four
Alpha EV68 processors, clocked at 1 GHz.

Parallel computers are well suited to numerical methods based on
meshing (see Box A, What is a numerical simulation?) but equally
to processing ab-initio calculations such as this molecular-dynamics
simulation of impact damage to two copper plates moving at 1 km/s
(see Simulation of materials). The system under consideration includes
100,000 atoms of copper representing a square-section (0.02 µm
square) parallelogram of normal density. The atoms interact in
accordance with an embedded atom potential over approximately
4–6 picoseconds. The calculation, performed on 18 processors of the
Tera supercomputer at Bruyères-le-Châtel using the CEA-developed
Stamp software, accounted for some ten minutes of “user” time
(calculation carried out by B. Magne). Tests involving up to 64 million
atoms have been carried out, requiring 256 processors over some one
hundred hours.

formance network: the cumulated power of several hundreds of
these “blocks” can reach several Tflops. One then speaks of a
massively parallel computer.
Such power can be made available for one single parallel appli-
cation using all the supercomputer’s resources, but also for many
independent applications, whether parallel or not, each using
part of the resources. 
While the characteristic emphasized to describe a supercom-
puter is usually its computational power, the input/output
aspect should not be ignored. These machines, capable of run-
ning large-scale simulations, must have storage systems with
suitable capacities and performance. In clusters of SMPs, each
mini-computer has a local disk space. However, it is not advi-
sable to use this space for the user files because it would
require the user to move explicitly his data between each dis-
tinct stage of his calculation. For this reason, it is important
to have disk space accessible by all of the mini-computers
making up the supercomputer. This space generally consists
in sets of disk drives connected to nodes whose main func-
tion is to manage them. Just as for computation, parallelism of
input/output allows high performance to be obtained. For such
purposes, parallel overall file systems must be implemented,
enabling rapid and unrestricted access to the shared disk
space.
While they offer considerable computational power, clusters
of SMPs nevertheless pose a number of challenges. Among the
most important, in addition to programming simulation soft-
ware capable of using efficiently a large number of processors,
is the development of  operating systems and associated soft-
ware tools compatible with such configurations, and fault-tole-
rant.

François Robin

Military Applications Division
CEA, DAM–Ile de France Center

CEA

Computational resources

for high-performance numerical simulation (cont’d)



model as regards a particular industrial pro-
blem. With the Trio software program deve-
loped at CEA, the best turbulence models
are systematically tested on exchanger geo-
metries comprising plates and fins whose
characteristics are determined experimen-
tally.
Two-dimensional and three-dimensional
thermalhydraulic simulations of the flow
around an isolated strip fin have been car-
ried out, using two simulation tools. First,
Trio enabled non-stationary simulations to
be carried out, with various LES models.
Then, the Fluent commercial computation
tool was used to carry out stationary simu-
lations with conventional turbulence models
(of the Reynolds-averaged Navier–Stokes
[RANS] equation type). These models yield
the representative quantities for flow tem-
poral averages.

The simulation results obtained are syste-
matically compared with the literature or to
laboratory experimental results: wall pres-
sure-, friction- and heat-transfer-coefficient
profiles, global pressure coefficient, and
frequency of downstream vortex release.
The meshes used are of the order of
100,000 cells for 2D simulations, 1 mil-
lion for 3D simulations.  It is apparent that
the numerical results are related to the tur-
bulence models used, but also to their
implementation. The results obtained in
LES (Figure 1) allow identification of the
mechanisms responsible for the increased
heat  transfer, by geometry-induced tur-
bulence generation. The sequence of
images enables visualization of the evolu-
tion over time of local mechanisms such
as vortex growth, detachment and entrain-
ment.

SIMULATION FOR DESIGN
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Turbulence, or disturbance in so-called turbulent flow, develops
in most of the flows that condition our immediate environment
(rivers, ocean, atmosphere). It also turns out to be one, if not the,
dimensioning parameter in a large number of industrial flows
(related to energy generation or conversion, aerodynamics, etc.).
Thus, it is not surprising that a drive is being launched to achieve
prediction for the process – albeit in approximate fashion as yet
– especially when it combines with complicating processes (stra-
tification, combustion, presence of several phases, etc.). This is
because, paraxodically, even though it is possible to predict the
turbulent nature of a flow and even, from a theoretical stand-
point, to highlight certain common – and apparently universal –
characteristics of turbulent flows,(1) their prediction, in specific
cases, remains tricky. Indeed, it must take into account the consi-

Figure.  Instantaneous (top) and averaged (bottom) temperature field in a mixing situation. The curve shows the history of temperature at one point:
fluctuating instantaneous value in blue and mean in red (according to Alexandre Chatelain, doctoral dissertation) (DEN/DTP/SMTH/LDTA).
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derable range of space and time scales(2) involved in any flow of
this type.
Researchers, however, are not without resources, nowadays,
when approaching this problem. First, the equations governing
the evolution of turbulent flows over space and time
(Navier–Stokes equations(3)) are known. Their complete solu-
tion, in highly favorable cases, has led to predictive descrip-
tions. However, systematic use of this method of resolution
comes up against two major difficulties: on the one hand, it
would require complete, simultaneous knowledge of all
variables attached to the flow, and of the forced-flow condi-
tions imposed on it,(4) and, on the other hand, it would mobi-
lize computational resources that will remain unrealistic for
decades yet.

Modeling and simulation of turbulent flows                 F



Industrialization of these methods cannot
occur without customer support of the
consultancy type, the more so since such
methods require ever-increasing speciali-
zation. For this purpose, GRETh has deve-
loped the software platform concept,
which involves making the thermalhy-

draulic software programs and advanced
models available to its industrialists’ club,
and working in close collaboration with
the industrial partner, by giving access to
its own resources and associating him as
much as possible in tool use and imple-
mentation.(1)
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The sole option, based on the fluctuating character of the flow
due to turbulent agitation, must thus be to define and use ave-
rage values. One of the most widely adopted approaches consists
in looking at the problem from a statistical angle. The mean ove-
rall values for velocity, pressure, temperature… whose distribu-
tion characterizes the turbulent flow, are defined as the princi-
pal variables of the flow one then seeks to qualify relative to those
mean values. This leads to a decomposition of the motion (the
so-called Reynolds decomposition) into mean and fluctuating
fields, the latter being the measure of the instantaneous local dif-
ference between each actual quantity and its mean (Figure). These
fluctuations represent the turbulence and cover a major part of
the Kolmogorov spectrum.(1)

This operation considerably lowers the number of degrees of
liberty of the problem, making it amenable to computational treat-
ment. It does also involve many difficulties: first, it should be
noted that, precisely due to the non-linearity of the equations of
motion, any average process leads to new, unknown terms that
must be estimated. By closing the door on complete, determi-
nistic description of the phenomenon, we open one to modeling,
i.e. to the representation of the effects of turbulence on mean
variables.
Many advances have been made since the early models (Prandtl,
1925). Modeling schemas have moved unabated towards greater
complexity, grounded on the generally verified fact that any new
extension allows the previously gained properties to be preserved.
It should also be noted that, even if many new developments are
emphasizing anew the need to treat flows by respecting their

non-stationary character, the most popular modeling techniques
were developed in the context of stationary flows, for which,
consequently, only a representation of the flow’s temporal mean
can be achieved: in the final mathematical model, the effects of
turbulence thus stem wholly from the modeling process.
It is equally remarkable that, despite extensive work, no modeling
has yet been capable of accounting for all of the processes influen-
cing turbulence or influenced by it (transition, non-stationarity,
stratification, compression, etc.). Which, for the time being, would
seem to preclude statistical modeling from entertaining any ambi-
tions of universality.
Despite these limitations, most of the common statistical mode-
ling techniques are now available in commercial codes and indus-
trial tools. One cannot claim that they enable predictive compu-
tations in every situation. They are of varying accuracy, yielding
useful results for the engineer in controlled, favorable situations
(prediction of drag to an accuracy of 5–10%, sometimes better,
for some profiles), but sometimes inaccurate in situations that
subsequently turn out to lie outside the model’s domain of validity.
Any controlled use of modeling is based, therefore, on a qualifi-
cation specific to the type of flow to be processed. Alternative
modeling techniques, meeting the requirement for greater accu-
racy across broader ranges of space and time scales, and there-
fore based on a “mean” operator of a different nature, are cur-
rently being developed and represent new ways forward.
The landscape of turbulence modeling today is highly complex,
and the unification of viewpoints and of the various modeling
concepts remains a challenge. The tempting goal of modeling
with universal validity thus remains out of order. Actual imple-
mentation proceeds, in most cases, from compromises, guided
as a rule by the engineer’s know-how.

Frédéric Ducros 

Nuclear Energy Division
CEA Grenoble Center

(1) One may mention the spectral distribution of turbulent kinetic energy
known as the “Kolmogorov spectrum,” which illustrates very simply the
hierarchy of scales, from large, energy-carrying scales to ever smaller, less
energetic scales.
(2) This range results from the non-linearities of the equations of motion,
giving rise to a broad range of spatial and temporal scales. This range is
an increasing function of the Reynolds number, Re, which is a measure
of the inertial force to viscous force ratio. 
(3) The hypothesis that complete resolution of the Navier–Stokes equa-
tions allows simulation of turbulence is generally accepted to be true, at
any rate for the range of shock-free flows.
(4) This is a problem governed by initial and boundary conditions.

F

Figure 2. Trajectories followed by the
fluid inside a corrugated-plate heat
exchanger with an angle of 60° to the
flow direction. Obtained with the
Fluent software, these results illustrate
the work on local modeling of flows in
exchangers of this type.



matics – or by employing the data to model
the structure and function of biological sys-
tems using the laws of physics and che-
mistry. This paper discusses the latter
approach and, in particular, the modeling
of biological macromolecules at an atomic
scale.

Modeling a system

Modeling requires a theoretical frame-
work that defines how models of a system
are built and what rules they obey. In the
case of molecular modeling (see Box C,
Molecular modeling), this framework is
specified by atomic theory and the laws of
classical, quantum and statistical mecha-
nics. Precise application of these theories
depends, of course, on the nature of the
system. For a biological macromolecule, a
typical procedure involves five steps:
• defining the composition of the system.
This step identifies the composition, num-
ber and type of macromolecules to be inves-
tigated, the nature of the environment – e.g.
water or some other solvent – and the phy-
sical properties of the system – e.g. its tem-
perature and pressure;
• defining the laws that the model of the
system obeys. For molecular modeling,
two elements are required. First, a method
must be available to calculate the system’s
potential energy which is the sum of the
interaction energies between all of the
atoms in the system. This quantity is criti-

cal because it determines the most probable,
or the most stable, configurations of the
system. Second, an algorithm must be cho-
sen that uses potential energy to explore
the various configurations that are acces-
sible to the system. This algorithm is often
a classical dynamical one, which allows
the motion of atoms to be followed as a
function of time by solving the equations of
Newtonian mechanics;
• selecting initial conditions, such as the
position and velocity of each atom. Given
the structural complexity of biological macro-
molecules, it is usual to start from structures
determined experimentally by X-ray crys-
tallography or nuclear magnetic resonance
(NMR);
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Biological macromolecules

other molecules, which assist in their biological tasks. The
three-dimensional structure of proteins is very complex but
critical to their function.
Nucleic acids – deoxyribonucleic acid (DNA) and ribonu-
cleic acid (RNA) – are nucleotide polymers. DNA, in its
double-strand form (two nucleotide chains arranged in a
double helix), is the genetic material which, amongst other
things, codes instructions for the amino-acid sequences of all
the proteins synthesized by the cell. RNA, usually in a single-
strand form (one nucleotide chain), is essential for protein
synthesis.
Lipids, fundamental constituents of cell membranes, also
play an important part in metabolism and as energy reserves.
The lipids include a number of classes, such as phospholi-
pids, triglycerides and steroids.
Polysaccharides are polymers of simple sugars, such as fruc-
tose and glucose. They play a structural role, particularly in
plants (cellulose is a polysaccharide), are involved in molecu-
lar recognition and can serve as energy reserves.

Cells are the fundamental entities in all living organisms. Apart
from water, biological macromolecules are the major consti-
tuents of the cell, where they perform a multiplicity of func-
tions. A biological macromolecule comprises sub-units of low
molecular weight, added one to the other to form a long, chain-
shaped polymer. Usually, each chain is formed of only one
family of sub-units and the precise sequence of sub-units is
essential to the function of the macromolecule. There are four
major categories of macromolecules.
Proteins are probably the most important macromolecules,
since they play a predominant role in most biological pro-
cesses. For instance, enzymes are proteins that catalyze

the majority of chemical reactions in the cell. Other classes
of protein have more of a structural role or are involved in
signaling,(1) regulation of metabolism or the immune sys-
tem. Proteins are amino acid polymers – about twenty dif-
ferent types of amino acids are commonly found – and a pro-
tein may comprise several chains, each containing a few
hundred amino acids. Proteins are often associated with

1

(1) Transmission of signals allowing cells to communicate amongst
themselves.

The genome projects

The human genome project and similar projects for other organisms, such
as yeast and the mouse, consist in the sequencing and analysis of all the
DNA that forms the inherited genetic makeup of an organism. The genome
projects have spawned related approaches which also aim to investigate an
aspect of the functioning of cells and organisms at a global level. Thus,
for example: structural genomics tries to determine the three-dimensional
structures of all the proteins (Box 1) in an organism, directly by resolving
their structure, or indirectly by comparing them to other proteins with homo-
logous sequences and known structures; proteomics is dedicated to charac-
terizing all interactions between proteins within a cell; and metabolomics

seeks to identify the composition and distribution of metabolites in the cell
and how these change throughout the cell’s life and under various external
conditions.

2

• simulating the system, which involves sol-
ving the equations describing the atoms’
motion. Numerical simulation (Box A,
What is a numerical simulation?) is indis-
pensable in the case of biological macro-
molecules, since an analytical solution for
such a large, complicated system of equa-
tions is not possible. The computation time
required for a simulation varies depending
on system size, the precision of the methods
employed and the problem investigated. A
realistic simulation of a system of about fifty
thousand atoms would easily take up for
some weeks the most powerful of today’s
computers;
• analyzing the results. This analysis,
which is principally statistical, relates the
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