
model as regards a particular industrial pro-
blem. With the Trio software program deve-
loped at CEA, the best turbulence models
are systematically tested on exchanger geo-
metries comprising plates and fins whose
characteristics are determined experimen-
tally.
Two-dimensional and three-dimensional
thermalhydraulic simulations of the flow
around an isolated strip fin have been car-
ried out, using two simulation tools. First,
Trio enabled non-stationary simulations to
be carried out, with various LES models.
Then, the Fluent commercial computation
tool was used to carry out stationary simu-
lations with conventional turbulence models
(of the Reynolds-averaged Navier–Stokes
[RANS] equation type). These models yield
the representative quantities for flow tem-
poral averages.

The simulation results obtained are syste-
matically compared with the literature or to
laboratory experimental results: wall pres-
sure-, friction- and heat-transfer-coefficient
profiles, global pressure coefficient, and
frequency of downstream vortex release.
The meshes used are of the order of
100,000 cells for 2D simulations, 1 mil-
lion for 3D simulations.  It is apparent that
the numerical results are related to the tur-
bulence models used, but also to their
implementation. The results obtained in
LES (Figure 1) allow identification of the
mechanisms responsible for the increased
heat  transfer, by geometry-induced tur-
bulence generation. The sequence of
images enables visualization of the evolu-
tion over time of local mechanisms such
as vortex growth, detachment and entrain-
ment.

SIMULATION FOR DESIGN
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Turbulence, or disturbance in so-called turbulent flow, develops
in most of the flows that condition our immediate environment
(rivers, ocean, atmosphere). It also turns out to be one, if not the,
dimensioning parameter in a large number of industrial flows
(related to energy generation or conversion, aerodynamics, etc.).
Thus, it is not surprising that a drive is being launched to achieve
prediction for the process – albeit in approximate fashion as yet
– especially when it combines with complicating processes (stra-
tification, combustion, presence of several phases, etc.). This is
because, paraxodically, even though it is possible to predict the
turbulent nature of a flow and even, from a theoretical stand-
point, to highlight certain common – and apparently universal –
characteristics of turbulent flows,(1) their prediction, in specific
cases, remains tricky. Indeed, it must take into account the consi-

Figure.  Instantaneous (top) and averaged (bottom) temperature field in a mixing situation. The curve shows the history of temperature at one point:
fluctuating instantaneous value in blue and mean in red (according to Alexandre Chatelain, doctoral dissertation) (DEN/DTP/SMTH/LDTA).
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derable range of space and time scales(2) involved in any flow of
this type.
Researchers, however, are not without resources, nowadays,
when approaching this problem. First, the equations governing
the evolution of turbulent flows over space and time
(Navier–Stokes equations(3)) are known. Their complete solu-
tion, in highly favorable cases, has led to predictive descrip-
tions. However, systematic use of this method of resolution
comes up against two major difficulties: on the one hand, it
would require complete, simultaneous knowledge of all
variables attached to the flow, and of the forced-flow condi-
tions imposed on it,(4) and, on the other hand, it would mobi-
lize computational resources that will remain unrealistic for
decades yet.

Modeling and simulation of turbulent flows                 F



Industrialization of these methods cannot
occur without customer support of the
consultancy type, the more so since such
methods require ever-increasing speciali-
zation. For this purpose, GRETh has deve-
loped the software platform concept,
which involves making the thermalhy-

draulic software programs and advanced
models available to its industrialists’ club,
and working in close collaboration with
the industrial partner, by giving access to
its own resources and associating him as
much as possible in tool use and imple-
mentation.(1)
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The sole option, based on the fluctuating character of the flow
due to turbulent agitation, must thus be to define and use ave-
rage values. One of the most widely adopted approaches consists
in looking at the problem from a statistical angle. The mean ove-
rall values for velocity, pressure, temperature… whose distribu-
tion characterizes the turbulent flow, are defined as the princi-
pal variables of the flow one then seeks to qualify relative to those
mean values. This leads to a decomposition of the motion (the
so-called Reynolds decomposition) into mean and fluctuating
fields, the latter being the measure of the instantaneous local dif-
ference between each actual quantity and its mean (Figure). These
fluctuations represent the turbulence and cover a major part of
the Kolmogorov spectrum.(1)

This operation considerably lowers the number of degrees of
liberty of the problem, making it amenable to computational treat-
ment. It does also involve many difficulties: first, it should be
noted that, precisely due to the non-linearity of the equations of
motion, any average process leads to new, unknown terms that
must be estimated. By closing the door on complete, determi-
nistic description of the phenomenon, we open one to modeling,
i.e. to the representation of the effects of turbulence on mean
variables.
Many advances have been made since the early models (Prandtl,
1925). Modeling schemas have moved unabated towards greater
complexity, grounded on the generally verified fact that any new
extension allows the previously gained properties to be preserved.
It should also be noted that, even if many new developments are
emphasizing anew the need to treat flows by respecting their

non-stationary character, the most popular modeling techniques
were developed in the context of stationary flows, for which,
consequently, only a representation of the flow’s temporal mean
can be achieved: in the final mathematical model, the effects of
turbulence thus stem wholly from the modeling process.
It is equally remarkable that, despite extensive work, no modeling
has yet been capable of accounting for all of the processes influen-
cing turbulence or influenced by it (transition, non-stationarity,
stratification, compression, etc.). Which, for the time being, would
seem to preclude statistical modeling from entertaining any ambi-
tions of universality.
Despite these limitations, most of the common statistical mode-
ling techniques are now available in commercial codes and indus-
trial tools. One cannot claim that they enable predictive compu-
tations in every situation. They are of varying accuracy, yielding
useful results for the engineer in controlled, favorable situations
(prediction of drag to an accuracy of 5–10%, sometimes better,
for some profiles), but sometimes inaccurate in situations that
subsequently turn out to lie outside the model’s domain of validity.
Any controlled use of modeling is based, therefore, on a qualifi-
cation specific to the type of flow to be processed. Alternative
modeling techniques, meeting the requirement for greater accu-
racy across broader ranges of space and time scales, and there-
fore based on a “mean” operator of a different nature, are cur-
rently being developed and represent new ways forward.
The landscape of turbulence modeling today is highly complex,
and the unification of viewpoints and of the various modeling
concepts remains a challenge. The tempting goal of modeling
with universal validity thus remains out of order. Actual imple-
mentation proceeds, in most cases, from compromises, guided
as a rule by the engineer’s know-how.

Frédéric Ducros 

Nuclear Energy Division
CEA Grenoble Center

(1) One may mention the spectral distribution of turbulent kinetic energy
known as the “Kolmogorov spectrum,” which illustrates very simply the
hierarchy of scales, from large, energy-carrying scales to ever smaller, less
energetic scales.
(2) This range results from the non-linearities of the equations of motion,
giving rise to a broad range of spatial and temporal scales. This range is
an increasing function of the Reynolds number, Re, which is a measure
of the inertial force to viscous force ratio. 
(3) The hypothesis that complete resolution of the Navier–Stokes equa-
tions allows simulation of turbulence is generally accepted to be true, at
any rate for the range of shock-free flows.
(4) This is a problem governed by initial and boundary conditions.

F

Figure 2. Trajectories followed by the
fluid inside a corrugated-plate heat
exchanger with an angle of 60° to the
flow direction. Obtained with the
Fluent software, these results illustrate
the work on local modeling of flows in
exchangers of this type.
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