
o achieve the fusion of two light atom nuclei, they must be brought in close proximity to each other, whereas they naturally repel one another, since they both bear a positive electric charge. If the energy this fusion releases is to be recovered, the required energy must first be supplied, to break through this barrier, and allow each nucleus to reach the region, very close to the other nucleus, where the nuclear forces make themselves felt, that are able to overcome this electrostatic repulsion, or Coulomb barrier. Once this outcome is achieved, the most energetic reaction are those yielding the fused nucleus with the highest binding energy. In the event at hand, this is the case for helium isotope ⁴H, which comprises four nucleons (two protons p and two neutrons n).

Of the fusion reactions that yield energy as well as generating, on the one hand, a new - helium (He) or tritium (T) nucleus and, on the other hand, a nucleon, four are, at first blush, of particular interest.* The first two are attractive, since they only involve deuterium (D), the most abundant hydrogen isotope on Earth. Mastering them may be the ultimate goal for controlled fusion, however they are by far the hardest to bring about.

 $D + D \rightarrow {}^{3}He + n + 3.27 \text{ MeV}$ $D + D \rightarrow T + p + 4.04 \text{ MeV}$

The two subsequent ones, yielding the very stable helium-4 nucleus, are particularly energetic:

D + T \rightarrow ⁴He + n + 17.58 MeV

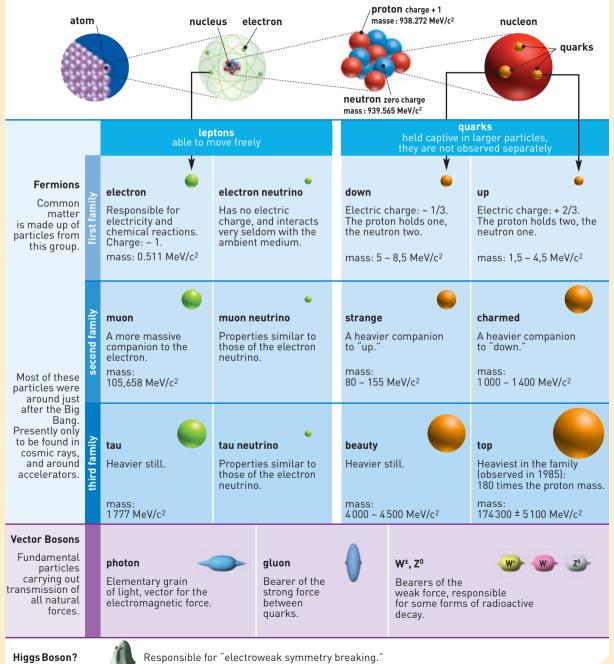
D +
$${}^{3}\text{He} \rightarrow {}^{4}\text{He}$$
 + p + 18.34 MeV

The fusion reaction that is most easily achieved, exhibiting as it does the highest cross-section, is that involving a deuterium (D) nucleus and a tritium (T) nucleus, their fusion yielding a helium nucleus and a neutron, with respective energies of 3.5 MeV and 14.1 MeV. Thus it is on this reaction, the socalled D-T reaction, that research work on controlled fusion has focused, whether in the context of inertial-confinement fusion or of magnetic-confinement fusion.

Production of the tritium required is achieved through a fifth reaction, involving lithium and... the neutrons from the D-T reaction

6l i + n \rightarrow ⁴He + T + 4.79 MeV $7Li + n \rightarrow {}^{4}He + T + n - 2.47 \text{ MeV}$ The primary fuels, i.e. the true raw materials for a reactor, are thus deu-

terium and lithium (Li).


* These reactions are known as thermonuclear reactions since only a temperature of the order of about a hundred million degrees, together with other density and confinement time conditions (see main article), make it possible to bring them about. See page 8 for the table of the main nuclear reactions occurring inside the Sun.

Elementary particles and fundamental interactions

eutrinos are the stealthiest particles in the standard model of particle physics, the theoretical framework describing all known elementary particles and the fundamental interactions they mediate (see Table).

The basic constituents of matter, fermions, are partitioned into two main categories: leptons, which do not respond to strong interaction, and quarks, which are subject to all of the interactions. The six quarks form three pairs (up/down, charmed/strange, beauty/top). In the lepton category, the charged leptons (electron e-, muon μ, tau τ) are involved in the electromagnetic interaction and the

weak interaction, while neutral leptons (electron neutrino v_e , muon neutrino $v\mu$, tau neutrino ν_{τ}) are only subject to weak interaction. In the standard model, neutrinos have zero mass, however experiments have shown they do have some mass, though very small, the exact value of which is as yet unknown. Involvement

Tahleau Constituants élémentaires. of the various elementary constituents in the fundamental interactions is governed by their quantum numbers, or interaction charges (electric charge, color charge [1]...). To every constituent of matter is associated its antiparticle, a particle having the same mass and opposite charges. The gravitational force, which is not included in the standard model, acts on all fermions in proportion to their mass. The table of elementary constituents of matter manifests another classification - independently from their involvement in fundamental interactions - into three generations, or families. From one family to the next, charged quarks and leptons having the same charges only differ by their mass. The electron, up quark and down quark, which all belong to the first family, are the lightest massive particles. They are stable particles, and the constituents of common matter. For instance, the proton is made up of two up quarks and one down quark; the neutron, of two down quarks and one up quark. Particles in the other two families are unstable, and rapidly decay into

(1) Color charge: a quantum number that determines whether a particle is involved in strong interaction. The color charge can take on three values: "red," "green," or "blue" – such colors bearing no relation to visible colors. Every quark bears one of the three color charges, every antiquark one of the three anticolor charges. Gluons bear double color—anticolor charges (eight possible combinations).

stable first-generation particles. This is why all the stable matter in the Universe is made up from constituents from the first family.

According to quantum mechanics, for an interaction to take place, at least one elementary particle, a boson, must be emitted, absorbed or exchanged. The photon is the vector for the electromagnetic interaction, the W+, W- and Z0 mediate the weak interaction, and gluons act as messengers for the strong interaction. Quarks and charged leptons exchange photons, but conserve their electric charge after the exchange, the photon having no electric charge. Since the photon's mass is zero, the electromagnetic interaction's range is infinite. Having no electric charge, neutrinos are the only elementary fermions that are not subject to electromagnetic interac-

In the electroweak theory (a unification of the weak and electromagnetic interactions), the weak interaction has two aspects: charged-current weak interaction, for which the interaction vectors are the W+ and W-; and neutral-current weak interaction, for which the mediator is Z^0 . These two forms of weak interaction are active between all elementary fermions (quarks, charged leptons and neutrinos). The mass of these bosons being very large $(80,000~{\rm MeV/c^2}~{\rm for}~{\rm W^+},91,180~{\rm MeV/c^2}~{\rm for}~{\rm Z^0}),$ the range of the weak interaction is tiny – of the order of

10⁻¹⁸ m. Since W[±] bosons have a nonzero electric charge, fermions exchanging such bosons undergo a change in electric charge, as of nature (flavor). Conversely, since the Z⁰ boson has no electric charge, fermions exchanging one undergo no change in nature. In effect, neutral-current weak interaction is somewhat akin to exchanging a photon. As a general rule, if two fermions are able to exchange a photon, they can also exchange a Z⁰. On the other hand, a neutrino has the ability to exchange a Z⁰ with another particle, though not a photon. Only those guarks that have a color charge exchange gluons, these in turn being bearers of a color charge. Thus, when a gluon exchange takes place between quarks, the latter exchange their respective colors. Gluons have zero mass, however, since they do bear a color charge, they are able to interact. The range of the strong interaction is consequently very restricted – of the order of 10⁻¹⁵ m.

The graviton, the vector for gravitational interaction, has not so far been observed.

Theory predicts that another fundamental interaction mechanism exists, responsible for the mass of elementary particles, for which the messenger is the Higgs boson, which remains as yet undiscovered. This boson makes it possible to assign a mass to elementary fermions of zero mass that interact with it.

fundamental interaction	messenger	actions
gravitational	graviton?	responsible for the mutual attraction of any two masses and for the law of falling bodies
electromagnetic	photon	responsible for the attraction between electrons and atomic nuclei, hence for the cohesion of atoms and molecules
weak	W+, W-, Z ⁰	the root cause of thermonuclear fusion inside the Sun, ensuring its longevity. β - and β + radioactivity, and reactions involving neutrinos are weak interactions
strong	gluons	ensures the cohesion of the atomic nucleus

Table.
Fundamental interaction and elementary constituents.