Tell-tale spectra

he various categories of radiation are distributed across the electromagnetic spectrum according to their wavelength, from the shorter, more energetic wavelengths (gamma radiation) to the longer ones (radio waves) through visible light. The spectrum of the latter domain, for instance, may be obtained by passing light through a prism, which decomposes it into its various components, from red to purple (see Figure a). A rainbow likewise exhibits a spectrum of the visible light emanating from the Sun, through refraction in, and reflection on, water droplets.

The same principle is applied for the whole range of electromagnetic radiation, through the use of spectrographs, which analyze the spectral energy distribution of such radiation, and spectrometers, which record each component of the spectra by means of photoelectric sensors and measure radiation intensity, plotted against wavelength.

In astrophysics, spectroscopy consists in the remote investigation of bodies from the radiation emitted by them, or the alterations induced in that radiation as it encounters other bodies in its path. Spectra exhibit, between wide, continuous bands (each of which is termed a spectral continuum), discrete lines, each corresponding to a specific wavelength and, ultimately, to an energy level of an atom or molecule in the body observed. These spectral lines are of two types, emission lines and absorption lines.

Figure a.

Bright emission lines correspond to radiation directly emitted by a body heated to a very high temperature. An emission spectrum thus allows detection of the presence of certain atoms or molecules in the emitting body.

Dark absorption lines also correspond to a specific wavelength, this being due, however, to the process whereby a radiation's intensity decreases as it goes through a material medium, to which it transfers all or part of its energy. Thus, the composition of a hot, radiating source such as the Sun may be analyzed from the absorption by its atmosphere of part of the electromagnetic radiation emitted (absorption spectrum).

Matters do not end there: analysis of spectral shift allows the relative motion of the emitting body to be estimated, thanks to the **Doppler effect**, ⁽¹⁾ on the selfsame principle whereby the sound of an approaching vehicle gets higherpitched, and lower-pitched for a receding vehicle. The apparent change in **frequency** (higher even as wavelength is shorter) is thus proportional to the relative velocity of observer and source. For a light source, this effect implies that lines in that source's spectrum will be shifted towards blue (**blueshift**), i.e. to shorter wavelengths, if it is approaching, or towards red (**redshift**), corresponding to longer wavelengths, if it is receding (see Figure b).

The Doppler effect is used in astrophysics, particularly to establish the radial velocity of stars or galaxies, for their perspective motion causes a shift in the lines emitted, relative to their nominal positions, or compared to the same lines emitted by a terrestrial source.

Finally, the splitting of spectral lines induced by a magnetic field (*Zeeman effect*) is used to measure the intensity of the magnetic fields associated to astronomical objects, the Sun in particular.

(1) Or, more accurately, Doppler-Fizeau effect. Discovered by Austrian physicist Christian Doppler for sound waves, the effect was extended to optics by French physicist Hippolyte Fizeau.