From storage to disposal

The object of nuclear waste storage and disposal is to ensure the longterm confinement of radioactivity, in other words to contain radionuclides

within a definite space, segregated from humankind and the environment, as long as required, so that the possible return to the **biosphere** of minute amounts of radionuclides can have no unacceptable health or environmental impact.

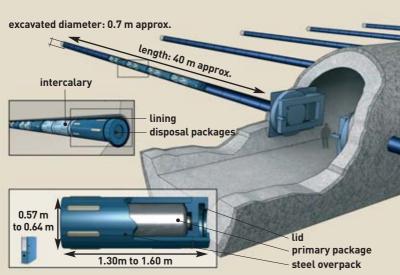
According to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, signed on 5 September 1997, "storage" means "the holding of spent fuel or of radioactive waste in a facility that provides for its containment, with the intention of retrieval." This is thus, by definition, an interim stage, amounting to a delaying, or wait-and-see solution, even though this may be for a very long time (from a few decades to several hundred years), whereas disposal may be final.

Used from the outset of the nuclear power age, industrial storage keeps spent fuel awaiting reprocessing, and conditioned high-level waste (HLW), or long-lived intermediate-level waste (ILW-LL) in conditions of safety, pending a long-term management mode for such waste. Retrieval of stored packages is anticipated, after a period of limited duration (i.e. after a matter of

CEA design study for a common container for the long-term storage and disposal of long-lived, intermediate-level waste.

years, or tens of years).

Long-term storage (LTS) may be contemplated, in particular, in the event of the deferred deployment of a disposal facility, or of reactors to carry out


recycling-transmutation, or simply to turn to advantage the natural decay of radioactivity (and hence the falling off of heat release from high-level waste), before putting the waste into geologi-

cal disposal. By "long term" is meant a timespan of up to 300 years. Long-term storage may take place in a surface or subsurface facility. In the former case, the site may be protected, for instance, by a reinforced-concrete structure. In the latter case, it will be located at a depth of some tens of meters, and protected by a natural environment (for instance, if buried in a hill-side) and its host rock.

Whichever management strategy is chosen, it will be imperative to protect the biosphere from the residual ultimate waste. The nature of the radioelements the latter contains means a solution is required that has the ability to ensure their confinement over several tens of thousand years, in the case of long-lived waste, or even longer. On such timescales, social stability is a major uncertainty that has to be

taken on board. Which is why disposal in deep geological strata (typically, 500 m down) is seen as a reference solution, insofar as it inherently makes for deployment of a more passive technical solution, with the ability to stand, with no increased risk, an absence of surveillance, thus mitigating a possible loss of memory on the part of society. The geological environment of such a disposal facility thus forms a further, essential barrier, which does not exist in the storage case.

A disposal facility may be designed to be reversible over a given period. The concept of reversibility means the design must guarantee the ability, for a variety of reasons, to access the packages, or even to take them out of the facility, over a certain timespan, or to opt for the final closure of the disposal facility. Such reversibility may be envisaged as a succession of stages, each affording a decreasing "level of reversibility." To simplify, each stage consists in carrying out one further technical operation bringing the facility closer to final closure, making retrieval more difficult than at the previous stage, according to wellspecified criteria.

ANDRA design for the disposal of standard vitrified waste packages in horizontal galleries, showing in particular the packages' various canisters, and some characteristics linked to potential reversibility of the disposal facility.

ANDRA

What is radioactive waste?

ccording to the International Atomic Energy Agency (IAEA), radioactive waste may be defined as "any material for which no use is foreseen and that contains radionuclides at concentrations greater than the values deemed admissible by the competent authority in materials suitable for use not subject to control." French law in turn introduces a further distinction, valid for nuclear waste as for any other waste, between waste and final, or "ultimate," waste (déchet ultime). Article L. 541-1 of the French Environmental Code thus specifies that "may be deemed as waste any residue from a process of production, transformation or use, any substance, material, product, or, more generally, any movable property left derelict or that its owner intends to leave derelict." further defining as ultimate "waste, be it the outcome of waste treatment or not, that is not amenable to further treatment under prevailing technological and economic conditions, in particular by extraction of the recoverable, usable part, or mitigation of its polluting or hazardous character."

Internationally, experts from IAEA and the Nuclear Energy Agency (NEA) – an OECD organization – as those in the European Commission find that long-lived waste produced in countries operating a nuclear power program is stored securely nowadays, whilst acknowledging a final solution is required, for the long-term management of such waste. They consider burial in deep geological structures appears, presently, to be the safest way to achieve final disposal of this type of waste.

What constitutes radioactive waste? What are the volumes currently involved?

Radioactive waste is classified into a number of categories, according to its level of radioactivity, and the radioactive **period**, or **half-life**, of the radionuclides it contains. It is termed **long-lived waste** when that period is greater than 30 years, **short-lived waste** otherwise. The French classification system involves the following categories:

- very-low-level waste (VLLW); this contains very small amounts of radionuclides, of the order of 10–100 Bq/g (becquerels per gram), which precludes considering it as conventional waste;
- short-lived low and intermediate level waste (LILW-SL); radioactivity levels for such waste lie as a rule in a range from

- a few hundred to one million Bq/g, of which less than 10,000 Bq/g is from long-lived radionuclides. Its radioactivity becomes comparable to natural radioactivity in less than three hundred years. Production of such waste stands at some 15.000 m³ per year in France:
- long-lived low-level waste (LLW-LL);
 this category includes radium-bearing waste from the extraction of rare earths
 from radioactive ore, and graphite waste
 from first-generation reactors;
- long-lived intermediate-level waste (ILW-LL), this being highly disparate, whether in terms of origin or nature, with an overall stock standing, in France, at 45,000 m³ at the end of 2004. This mainly comes from spent fuel assemblies (cladding hulls and end-caps), or from operation and maintenance of installations; this includes, in particular, waste conditioned during spent fuel reprocessing operations (as from 2002, this type of waste is compacted, amounting to some 200 m³ annually), technological waste from the operation or routine maintenance of production or fuel-processing plants, from nuclear reactors or from research centers (some 230 m³ annually), along with sludges from effluent treatment (less than 100 m³ annually). Most such waste generates little heat, however some waste of this type is liable to release gases;
- high-level waste (HLW), containing fission products and minor actinides partitioned during spent fuel reprocessing (see Box B), and incorporated at high temperature into a glass matrix. Some 120 m³ of "nuclear glass" is thus cast every year. This type of waste bears the major part of radioactivity (over 95%), consequently it is the seat of considerable heat release, this remaining significant on a scale of several centuries.

Overall, radioactive waste conditioned in France amounts to less than 1 kg per year, per capita. That kilogram consists, for over 90%, of LILW-SL type waste, bearing but 5% of total radioactivity; 9% of ILW-LL waste, less than 1% HLW, and virtually no LLW-LL waste.

What of the waste of tomorrow?

From 1991, ANDRA compiled, on a yearly basis, a geographical inventory of waste present on French territory. In 2001, ANDRA was asked by government to augment this "National Inventory," with the threefold aim of characterizing extant stocks (state of conditioning, processing

traceability), predicting future waste production trends to 2020, and informing the public (see An inventory projecting into the future). ANDRA published this reference National Inventory at the end of 2004. To meet requirements for research in compliance with the directions set out in the French Act of 30 December 1991 (see Radioactive waste management research: an ongoing process of advances), ANDRA, in collaboration with waste producers, has drawn up a Dimensioning Inventory Model (MID: Modèle d'inventaire de dimensionnement), for the purposes of arriving at estimates of the volume of waste packages to be taken on board in research along direction 2 (disposal). This model, including as it does predictions as to overall radioactive waste arisings from the current reactor fleet, over their entire lifespan, seeks to group waste types into families, homogeneous in terms of characteristics, and to formulate the most plausible hypotheses, with respect to conditioning modes, to derive the volumes to be taken on board for the purposes of the investigation. Finally, MID sets out to provide detailed stocktaking, intended to cover waste in the broadest possible fashion. MID (not to be confused with the National Inventory, which has the remit to provide a detailed account of actual waste currently present on French territory) thus makes it possible to bring down the variety of package families to a limited number of representative objects, and to specify the requisite margins of error, to ensure the design and assessment of disposal safety will be as robust as feasible, with respect to possible future variations in data.

To ensure consistency between investigations carried out in accordance with direction 2 and those along direction 3 (conditioning and long-term storage), CEA adopted MID as input data. MID subsumes waste packages into standard package types, then computes the number and volume of HLW and ILW-LL packages, according to a number of scenarios, all based on the assumption that current nuclear power plants will be operated for 40 years, their output plateauing at 400 TWhe per year.

Table 1 shows the numbers and volumes for each standard package type, for the scenario assuming a continuation of current strategy, with respect to spent fuel reprocessing: reprocessing of 79,200 UOX fuel assemblies and storage of 5,400 MOX

MID standard package types	Symbols	Producers	Categories	Number	Volume (m³)
Vitrified waste packages	CO — C2	Cogema*	HLW	42,470	7,410
Activated metal waste packages	B1	EDF	ILW-LL	2,560	470
Bituminized sludge packages	B2	CEA, Cogema*	ILW-LL	105,010	36,060
Cemented technological waste packages	В3	CEA, Cogema*	ILW-LL	32,940	27,260
Cemented hull and end-cap packages	B4	Cogema*	ILW-LL	1,520	2,730
Compacted structural and technological waste packages	B5	Cogema*	ILW-LL	39,900	7,300
Containerized loose structural and technological waste packages	B6	Cogema*	ILW-LL	10,810	4,580
Total B				192,740	78,400
Total overall				235,210	85,810

^{*} renamed Areva NC in 2006

Table 1.

Amounts (number, and volume) of waste packages, as predicted in France for 40 years' operation of the current fleet of reactors, according to ANDRA's Dimensioning Inventory Model (MID).

assemblies discharged from the current PWR fleet, when operated over 40 years.

What forms does it come in?

Five types of generic packages (also found in MID) may be considered:

- cementitious waste packages: ILW-LL waste packages employing hydraulic-binder based materials as a conditioning matrix, or as an immobilizing grout, or yet as a container constituent;
- bituminized sludge packages: LLW and ILW-LL waste packages, in which bitumen is used as confinement matrix for low- and intermediate-level residues from treatment of a variety of liquid effluents (fuel processing, research centers, etc.);
- standard compacted waste packages (CSD-C: colis standard de déchets compactés): ILW-LL packages obtained through compaction conditioning of structural waste from fuel assemblies, and technological waste from the La Haque workshops;
- standard vitrified waste packages (CSD-V: colis standard de déchets vitrifiés):

HLW packages, obtained mainly through vitrification of highly active solutions from spent fuel reprocessing;

• spent fuel packages: packages consisting in nuclear fuel assemblies discharged from reactors; these are not considered to be waste in France.

The only long-lived waste packages to be generated in any significant amounts by current electricity production (see Box B) are vitrified waste packages and standard compacted waste packages, the other types of packages having, for the most part, already been produced, and bearing but a small part of total radioactivity.

What is happening to this waste at present? What is to be done in the long term?

The goal of long-term radioactive waste management is to protect humankind and its environment from the effects of the materials comprised in this waste, most importantly from radiological hazards. Any release or dissemination of radioactive

materials must thus be precluded, through the lasting isolation of such waste from the environment. This management is guided by the following principles: to produce as little waste as practicable; limit its hazardous character as far as feasible; take into account the specific characters of each category of waste; and opt for measures that will minimize the burden (monitoring, maintenance) for future generations.

As for all nuclear activities subject to control by the French Nuclear Safety Authority (Autorité de sûreté nucléaire), fundamental safety regulations (RFSs: règles fondamentales de sûreté) have been drawn up with respect to radioactive waste management: sorting, volume reduction, package confinement potential, manufacturing method, radionuclide concentration. RFS III-2.f, in particular, specifies the conditions to be met for the design of, and demonstration of safety for an underground repository, and thus provides a basic guide for disposal investigations. Industrial solutions (see Industrial solutions for all lowlevel waste) are currently available for nigh on 85% (by volume) of waste, i.e. VLLW and LILW-SL waste. A solution for LLW-LL waste is the subject of ongoing investigation by ANDRA, at the behest of waste producers. ILW-LL and HLW waste, containing radionuclides having very long half-lives (in some cases, greater than several hundred thousand years) are currently held in storage installations coming under the control of the Nuclear Safety Authority. What is to become of this waste in the long term, beyond this storage phase, is what the Act of 30 December 1991 addresses (see Table 2).

For all of these waste types, the French Nuclear Safety Authority is drawing up a National Radioactive Waste Management Plan, specifying, for each type, a management pathway.

	Short-lived Half-life < 30 years for the main elements	Long-lived Half-life > 30 years		
Very-low-level waste (VLLW)	Morvilliers dedicated disposal facility (open since 2003) Capacity: 650,000 m³			
Low-level waste (LLW)	Aube Center (open since 1992)	Dedicated disposal facility under investigation for radium-bearing waste (volume: 100,000 m³) and graphite waste (volume: 14,000 m³)		
Intermediate-level waste (ILW)	Capacity: 1 million m ³	MID volume estimate: 78,000 m ³		
High-level waste (HLW)	MID volume estimate: 7,400 m ³			

Table 2

Long-term management modes, as currently operated, or planned, in France, by radioactive waste category. The orange area highlights those categories targeted by investigations covered by the Act of 30 December 1991.

■ (1) According to the Dimensioning Inventory Model (MID)

What stands between waste and the environment?

aw, solid or liquid radioactive waste Tundergoes, after characterization Idetermination of its chemical and radiological makeup, and of its physical-chemical properties), conditioning, a term covering all the operations consisting in bringing this waste (or spent fuel assemblies) to a form suitable for its transport, storage, and disposal (see Box D). The aim is to put radioactive waste into a solid, physically and chemically stable form, and ensure effective, lasting confinement of the radionuclides it contains. For that purpose, two complementary operations are carried out. As a rule, waste is immobilized by a material whether by encapsulation or homogeneous incorporation (liquid or powdered waste, sludges), or encasing (solid waste) - within a matrix, the nature of, and performance specification for which depend on waste type (cement for sludges, evaporation concentrates and incineration ashes; bitumen for encapsulation of sludges or evaporation concentrates from liquid effluent treatment; or a vitreous matrix, intimately binding the nuclides to the glass network, for fission product or minor actinide solutions). This matrix contributes to the confinement function. The waste thus conditioned is placed in an impervious contai-

Cross-section of an experimental storage borehole for a spent fuel container (the lower part of the assembly may be seen, top right), in the Galatée gallery of CECER (Centre d'expertise sur le conditionnement et l'entreposage des matières radioactives: Radioactive Materials Conditioning and Storage Expertise Center), at CEA's Marcoule Center, showing the nested canisters.

ner (cylindrical or rectangular), consisting in one or more canisters. The whole – container and content – is termed a package. Equally, waste may be compacted and mechanically immobilized within a canister, the whole forming a package.

When in the state they come in as supplied by industrial production, they are known as **primary packages**, the pri-

mary container being the cement or metal container into which the conditioned waste is ultimately placed, to allow handling. The container may act as initial confinement barrier, allotment of functions between matrix and container being determined according to the nature of the waste involved. Thus, the whole obtained by the grouping together, within one container, of a number of primary

c (next)

ILW-LL packages may ensure confinement of the radioactivity of this type of waste. If a long-term storage stage is found to be necessary, beyond the stage of industrial storage on the premises of the producers, primary waste packages must be amenable to retrieval, as and when required: durable primary containers must then be available, in such conditions, for all types of waste.

In such a case, for spent fuel assemblies which might at some time be earmarked for such long-term storage, or even for disposal, it is not feasible to demonstrate, on a timescale of centuries, the integrity of the cladding holding the fuel, forming the initial confinement barrier during the in-reactor use stage. Securing these assemblies in individual, impervious cartridges is thus being considered, this stainless-steel cartridge being compatible with the various possible future management stages: treatment, return to storage, or disposal. Placing these cartridges inside impervious containers ensures a second confinement barrier, as is the case for highlevel waste packages.

In storage or disposal conditions, the waste packages will be subjected to a variety of aggressive agents, both internal and external. First, radionuclide

radioactive decay persists inside the package (self-irradiation process). Emission of radiation is concomitant with heat generation. For example, in confinement glasses holding high-activity (high-level) waste, the main sources of irradiation originate in the alpha decay processes from minor actinides, beta decay from fission products, and gamma transitions. Alpha decay, characterized by production of a recoil nucleus, and emission of a particle, which, at the end of its path, yields a helium atom, causes the major part of atom displacements. In particular, recoil nuclei, shedding considerable energy as they do over a short distance, result in atom displacement cascades, thus breaking large numbers of chemical bonds. This is thus the main cause of potential long-term damage. In such conditions, matrices must exhibit thermal stability, and irradiation-damage resistance.

Stored waste packages will also be subjected to the effects of water (leaching). Container canisters may exhibit a degree of resistance to corrosion processes (the overpacks contemplated for glasses may thus delay by some 4,000 years the arrival of water), and the confinement matrices must be proven to exhibit high chemical stability.

Between the containers and the ultimate barrier provided, in a radioactive waste deep disposal facility, by the geological environment itself, there may further be interposed, apart, possibly, from an overpack, other barriers, so-called engineered barriers, for backfill and sealing purposes. While these would be pointless as backfill in clay formations, they would have the capability, in other environments (granite), of further retarding any flow of radionuclides to the geosphere, notwithstanding degradation of the previously mentioned barriers.

What is transmutation?

Transmutation is the transformation of one nucleus into another, through a reaction induced by particles with which it is bombarded. As applied to the treatment of nuclear waste, this consists in using that type of reaction to transform long-lived radioactive isotopes into isotopes having a markedly shorter life, or even into stable isotopes, in order to reduce the long-term radiotoxic inventory. In theory, the projectiles used may be photons, protons, or neutrons.

In the first case, the aim is to obtain, by bremsstrahlung, [1] through bombardment of a target by a beam of electrons, provided by an accelerator, photons able to bring about reactions of the (γ, xn) type. Under the effects of the incoming gamma radiation, x neutrons are expelled from the nucleus. When applied to substances that are too rich in neutrons, and hence unstable, such as certain fission products (strontium 90, cesium 137...), such reactions yield, as a rule, stable substances. However, owing to the very low efficiency achieved, and the very high electron current intensity required, this path is not deemed to be viable.

In the second case, the proton-nucleus interaction induces a complex reaction, known as **spallation**, resulting in fragmentation of the nucleus, and the release

of a number of particles, including highenergy neutrons. Transmutation by way of *direct* interaction between protons is uneconomic, since this would involve, in order to overcome the Coulomb barrier, [2] very-high-energy protons (1-2 GeV), requiring a generating energy greater than had been obtained from the process that resulted in producing the waste. On the other hand, indirect transmutation, using very-high-energy neutrons (of which around 30 may be yielded, depending on target nature and incoming proton energy), makes it possible to achieve very significantly improved performance. This is the path forming the basis for the design of so-called hybrid reactors, coupling a subcritical core and a high-intensity proton accelerator (see Box F, What is an ADS?

The third particle that may be used is thus the neutron. Owing to its lack of electric charge, this is by far the particle best suited to meet the desired criteria. It is "naturally" available in large quantities inside nuclear reactors, where it is used to trigger fission reactions, thus yielding energy, while constantly inducing, concurrently, transmutations, most of them unsought. The best recycling path for waste would thus be to reinject it in the very installation, more or less, that had produced it...

When a neutron collides with a nucleus, it may bounce off the nucleus, or penetrate it. In the latter case, the nucleus, by absorbing the neutron, gains excess energy, which it then releases in various ways:

- by expelling particles (a neutron, e.g.), while possibly releasing radiation;
- by solely emitting radiation; this is known as a capture reaction, since the neutron remains captive inside the nucleus;
- by breaking up into two nuclei, of more or less equal size, while releasing concurrently two or three neutrons; this is known as a *fission reaction*, in which considerable amounts of energy are released.

Transmutation of a radionuclide may be achieved either through neutron capture or by fission. Minor actinides, as elements having large nuclei (heavy nuclei), may undergo both fission and capture reactions. By fission, they transform into radionuclides that, in a majority of cases, are short-lived, or even into stable nuclei. The nuclei yielded by fission (known as fission products), being smaller, are only the seat of capture reactions, undergoing, on average, 4 radioactive decays, with a half-life not longer than a few years, as a rule, before they reach a stable form. Through capture, the same heavy nuclei transform into other radionuclides, often long-lived, which transform in turn through natural decay, but equally through capture and fission.

(2) A force of repulsion, which resists the drawing together of same-sign electric charges.

⁽¹⁾ From the German for "braking radiation." High-energy photon radiation, yielded by accelerated (or decelerated) particles (electrons) following a circular path, at the same time emitting braking photons tangentially, those with the highest energies being emitted preferentially along the electron beam axis.

[(next)

The probability, for a neutron, of causing a capture or a fission reaction is evaluated on the basis, respectively, of its capture cross-section and fission cross-section. Such cross-sections depend on the nature of the nucleus (they vary considerably from one nucleus to the next, and, even more markedly, from one isotope to the next for the same nucleus) and neutron energy.

For a neutron having an energy lower than 1 eV (in the range of slow, or thermal, neutrons), the capture cross-sec-

tion prevails; capture is about 100 times more probable than fission. This remains the case for energies in the 1 eV-1 MeV range (i.e., that of epithermal neutrons, where captures or fissions occur at definite energy levels). Beyond 1 MeV (fast neutron range), fissions become more probable than captures.

Two reactor pathways may be considered, according to the neutron energy range for which the majority of fission reactions occur: thermal-neutron reactors, and fast-neutron reactors. The ther-

mal neutron pathway is the technology used by France for its power generation equipment, with close to 60 pressurizedwater reactors. In a thermal-neutron reactor, neutrons yielded by fission are slowed down (moderated) through collisions against light nuclei, making up materials known as moderators. Due to the moderator (common water, in the case of pressurized-water reactors), neutron velocity falls off, down to a few kilometers per second, a value at which neutrons find themselves in thermal equilibrium with the ambient environment. Since fission cross-sections for 235U and 239Pu, for fission induced by thermal neutrons, are very large, a concentration of a few per cent of these fissile nuclei is sufficient to sustain the cascade of fissions. The flux, in a thermal-neutron reactor, is of the order of 1018 neutrons per square meter, per second.

In a fast-neutron reactor, such as Phénix, neutrons yielded by fission immediately induce, without first being slowed down, further fissions. There is no moderator in this case. Since, for this energy range, cross-sections are small, a fuel rich in fissile radionuclides must be used (up to 20% uranium 235 or plutonium 239), if the neutron multiplication factor is to be equal to 1. The flux in a fast-neutron reactor is ten times larger (of the order of 1019 neutrons per square meter, per second) than for a thermal-neutron reactor.

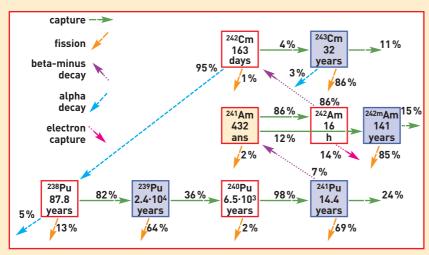


Figure. Simplified representation of the evolution chain of americium 241 in a thermal-neutron reactor (shown in blue: radionuclides disappearing through fission). Through capture, ²⁴¹Am transforms into ^{242m}Am, this disappearing predominantly through fission, and into ²⁴²Am, which mainly decays (with a half-life of 16 hours) through beta decay into ²⁴²Cm. ²⁴²Cm transforms through alpha decay into ²³⁸Pu, and through capture into ²⁴³Cm, which itself disappears predominantly through fission. ²³⁸Pu transforms through capture into ²³⁹Pu, which disappears predominantly through fission.