Modélisation et simulation des écoulements turbulents

La turbulence, ou l'agitation de l'écoulement dit turbulent, se développe dans la plupart des écoulements qui conditionnent notre environnement immédiat (rivières, océan, atmosphère). Elle se révèle être aussi un, sinon le, paramètre dimensionnant dans un bon nombre d'écoulements industriels (liés à la production ou la conversion d'énergie, à l'aérodynamique...). Il n'est donc pas étonnant que soient entrepris des efforts visant sa prédiction – fût-elle encore imprécise – surtout lorsqu'elle se trouve combinée à des phénomènes qui la compliquent : stratification, combustion, présence de plusieurs phases... C'est que, paradoxalement, même s'il est possible d'anticiper la nature turbulente d'un écoulement et même, d'un point de vue théorique, de dégager certaines caractéristiques communes et apparemment universelles aux écoulements turbulents(1), leur prédiction dans

des cas précis reste délicate. Celle-ci doit en effet prendre en compte l'importante gamme d'échelles spatiales et temporelles⁽²⁾ impliquées dans tout écoulement de ce type.

Les chercheurs ne sont pourtant pas démunis, aujourd'hui, pour aborder ce problème. En premier lieu, les équations qui régissent l'évolution spatio-temporelle des écoulements turbulents (équations de Navier-Stokes $^{(3)}$) sont connues. Leur résolution complète, dans des cas très favorables, a conduit à des descriptions prédictives. Mais l'emploi systématique de cette méthode de résolution se heurte à deux difficultés rédhibitoires : d'une part, il nécessiterait la connaissance complète et simultanée de toutes les variables attachées à l'écoulement et des forçages s'exerçant sur lui $^{(4)}$ et, d'autre part, il mobiliserait des moyens de calculs irréalistes pour encore des décennies.

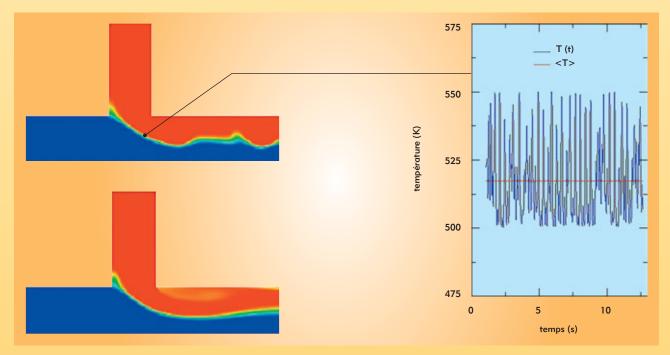


Figure. Champ de température instantané (haut) et moyenné (bas) dans une situation de mélange. La courbe donne l'historique de la température en un point : valeur instantanée fluctuante en bleu et moyenne en rouge (d'après la thèse d'Alexandre Chatelain [DEN/DTP/SMTH/LDTA]).

(suite)

Il faut donc se résoudre, en s'appuyant sur le caractère fluctuant dû à l'agitation turbulente, à définir et utiliser des moyennes. Une des approches les plus répandues consiste à aborder le problème sous un angle statistique. Les moyennes d'ensemble de vitesse, de pression, de température... dont la distribution caractérise l'écoulement turbulent sont définies comme les variables principales de l'écoulement qu'on cherche à qualifier par rapport à ces moyennes. Ceci conduit à une décomposition du mouvement (dite de Reynolds) en champs moyen et fluctuant, ce dernier mesurant l'écart instantané et local entre chaque grandeur réelle et sa moyenne (figure). Ces fluctuations représentent la turbulence et couvrent une partie importante du spectre de Kolmogorov⁽¹⁾.

Cette opération réduit considérablement le nombre de degrés de liberté du problème et le rend « manipulable » informatiquement. Elle comporte aussi de nombreuses difficultés : il faut tout d'abord constater que, précisément en raison des non-linéarités des équations du mouvement, toute moyenne fait surgir des termes nouveaux et inconnus qu'il faut estimer. En fermant la porte à la description complète et déterministe du phénomène, on ouvre celle de la modélisation, c'est-à-dire à la représentation des effets de la turbulence sur les variables moyennes.

Beaucoup de progrès ont été accomplis depuis les premiers modèles (Prandtl, 1925). Les modélisations n'ont cessé d'évoluer vers plus de complexité, se basant sur le fait généralement vérifié que toute nouvelle extension permet de conserver les propriétés antérieurement acquises. Il faut aussi constater que, même

(1) On peut faire référence à la répartition spectrale de l'énergie cinétique turbulente, connue comme le "spectre de Kolmogorov", qui illustre de manière très simple la hiérarchie des échelles, des grandes échelles porteuses d'énergie aux échelles de plus en plus petites et de moins en moins énergétiques.

(2) Cette étendue est le résultat des non-linéarités des équations du mouvement qui donne naissance à une gamme étendue d'échelles spatiales et temporelles. Cette gamme est une fonction croissante du nombre de Reynolds, Re, mesurant le rapport entre force d'inertie et force visqueuse.
(3) L'hypothèse selon laquelle la résolution complète des équations de Navier-Stokes permet la simulation de la turbulence est généralement admise, tout du moins dans la gamme des écoulements sans choc.

(4) Il s'agit d'un problème régi par des conditions initiales et aux limites.

si de nombreux développements remettent en avant la nécessité de traiter les écoulements en respectant leur caractère *instationnaire*, les modélisations les plus populaires ont été développées dans le cadre des écoulements *stationnaires*, pour lesquels on n'accède donc qu'à une représentation de la moyenne temporelle de l'écoulement : dans le modèle mathématique final, les effets de la turbulence proviennent ainsi intégralement de la modélisation.

Il est également remarquable que, malgré de nombreux travaux, aucune modélisation n'est aujourd'hui capable de rendre compte de l'intégralité des phénomènes qui influencent la turbulence ou sont influencés par elle (transition, instationnarité, stratification, compression, etc.). Ce qui semble pour l'instant empêcher les modélisations statistiques de nourrir une ambition d'universalité.

Malgré ces limitations, la plupart des modélisations statistiques courantes sont maintenant disponibles dans les codes commerciaux et les outils des industriels. Il n'est pas possible de prétendre qu'elles permettent des calculs prédictifs dans toute situation. Leur précision est variable, offrant des résultats utiles pour l'ingénieur dans des situations maîtrisées et favorables (prédiction de la trainée avec une précision de 5 % à 10 % d'erreur [parfois mieux] sur certains profils), mais parfois faux dans des situations qui se révèlent, après coup, en dehors du champ de validité du modèle. Tout emploi maîtrisé d'une modélisation repose donc sur une qualification particulière au type d'écoulement à traiter. Des modélisations alternatives, répondant au besoin d'une plus grande précision sur des gammes d'échelles spatiales et temporelles plus étendues et donc basées sur un opérateur de "moyenne" d'une nature différente, sont actuellement en développement et représentent des voies nouvelles.

Le paysage des modélisations de la turbulence est aujourd'hui très complexe et l'unification des points de vue et des divers concepts de modélisation est une gageure. La tentation de l'universalité des modélisations reste donc hors de propos. Leur mise en œuvre réelle relève la plupart du temps de compromis généralement guidés par le savoir-faire de l'ingénieur.

Frédéric Ducros

Direction de l'énergie nucléaire CEA centre de Grenoble