
Qu'est-ce qu'un ADS?

n ADS (de l'anglais Accelerator Driven System) est un système hybride constitué par un réacteur nucléaire fonctionnant en mode sous-critique, c'est-àdire incapable à lui seul d'entretenir une réaction en chaîne de fission, "piloté" par

une source externe capable de fournir le complément de neutrons nécessaire^[1].

Dans le cœur d'un réacteur nucléaire. en effet, est libérée l'énergie de fission des noyaux lourds comme ceux de l'uranium 235 ou du plutonium 239. L'uranium 235 produit en fissionnant en moyenne 2,5 neutrons qui pourront à leur tour provoquer une nouvelle fission s'ils heurtent un noyau d'uranium 235. Il est donc Schéma de principe d'un ADS. concevable qu'une fois la première fission amorcée, une réaction en chaîne puisse se développer et conduise, par une succession de fissions, à un accroissement de la population de neutrons. Mais parmi les neutrons produits par la première fission, certains sont capturés et ne donnent pas naissance à de nouvelles fissions. Le nombre de fissions générées à partir d'une fission initiale est caractérisé par le facteur de multiplication effectif keff, égal au rapport des neutrons de fission produits sur les neutrons disparus. De la valeur de ce coefficient dépend le devenir de la population de neutrons : si k_{eff} est nettement plus grand que 1, cette population augmente très rapidement; si k_{eff} est très légèrement supérieur à 1, la multiplication des neutrons s'enclenche mais reste sous contrôle : c'est

rage d'un réacteur; si keff est égal à 1, la population reste stable: c'est la situation d'un réacteur en fonctionnement normal et si k_{eff} est plus petit que 1, la population de neutrons décline et s'éteint sauf si, et c'est le cas dans un système hybride, une

source extérieure apporte des neutrons. À partir du facteur de multiplication effectif. la **réactivité** d'un réacteur est définie par le rapport (k_{eff}-1) / k_{eff}. La condition de stabilité s'exprime alors par une réactivité nulle. Pour stabiliser la population de neutrons, on joue sur la proportion de matériaux à forte section de capture de neutrons (matériaux absorbants) au sein du réacteur.

Dans un ADS, la source de neutrons supplémentaires est alimentée par des protons créés à une énergie d'environ 100 keV, puis injectés dans un accélérateur (linéaire ou cyclotron) qui les amène à une énergie de L'ordre du GeV et les conduit vers une cible de métal lourd (plomb, plomb-bismuth, tungstène ou tantale). Irradiée par le faisceau de protons, cette cible génère, par des réactions de spallation, un flux intense de neutrons d'énergie élevée (entre 1 et 20 MeV), un seul proton incident pouvant générer jusqu'à 30 neutrons. Ces derniers vont ensuite interagir avec le combustible du milieu multiplicateur de neutrons souscritique et produire d'autres neutrons (neutrons de fission) (figure).

La plupart des projets de systèmes hybrides ont pour cœur (généralement annu-

> laire) des milieux à neutrons rapides. ces derniers permettant d'obtenir les bilans neutroniques les plus favorables à la transmutation, opération qui permet de "brûler" des déchets mais peut également servir à produire de nouveaux noyaux fissiles. Un tel système peut également être utilisé pour la production d'énergie, même si une partie de celle-ci doit être réservée à l'alimentation de l'accé-

lérateur de protons, part d'autant plus importante que le système est plus souscritique. Il est. par principe, à l'abri de la plupart des accidents de réactivité, son facteur de multiplication étant inférieur à 1. contrairement à un réacteur fonctionnant en mode critique : la réaction en chaîne s'arrêterait si elle n'était entretenue par cet apport de neutrons externes.

Composant important d'un réacteur hybride, la fenêtre, positionnée en bout de la ligne de faisceau, isole l'accélérateur de la cible et permet de le maintenir sous vide. Traversée par le faisceau de protons, c'est une pièce sensible du système : sa durée de vie dépend de contraintes thermigues, mécaniques et de la corrosion. Il existe toutefois des projets d'ADS sans fenêtre. Dans ce cas, ce sont les contraintes de confinement et d'extraction des produits radioactifs de spallation qui doivent être pris en compte.

Voir à ce sujet Clefs CEA n°37, p. 14.

cet état qui est recherché lors du démar-