Vous êtes ici : Accueil > L'institut > Etude de l'intégration de matériaux 2D dans des commutateurs

Agenda


Soutenance de thèse

Etude de l'intégration de matériaux 2D dans des commutateurs

Lundi 04 décembre 2023 à 13.30, Novotel «Grenoble Centre», Salle Himalaya, 7 Place Robert Schuman, 38000 Grenoble

Publié le 4 décembre 2023
Clotilde Ligaud
Co-direction LETI et Spintronique et Technologie des Composants (Institut de Recherche Interdisciplinaire de Grenoble)
Le développement des systèmes de télécommunication sans fils entraine l’utilisation de gammes de fréquences peu exploitées jusqu’alors. Afin de garder les performances désirées dans ces gammes de fréquences, le développement de dispositifs appropriés est nécessaire. Les matériaux 2D sont des candidats idéaux puisqu’ils présentent des performances exceptionnelles, notamment en termes de miniaturisation, de flexibilité ou d'économie d’énergie. En comparaison aux dispositifs actuels, l’utilisation des matériaux 2D permettrait d’obtenir des fréquences de coupure plus importantes dans des commutateurs en radiofréquence (RF). Cependant, l’intégration à grande échelle des matériaux 2D dans ces dispositifs avec des procédés compatibles en microélectronique et en salle blanche soulève encore de nombreux problèmes comme l’homogénéité et la qualité de la croissance puis du transfert, la gestion des interfaces ou encore la prise des contacts électriques. Durant ce travail de thèse, un procédé d’intégration complet a été développé incluant la réalisation d’un substrat avec électrodes, le transfert du matériau 2D ainsi que des étapes de mise en forme. Ce procédé a été entièrement réalisé en salle blanche et avec des techniques de la microélectronique compatible en grande surface. Dans ce travail, un effort particulier a été fait pour garantir la qualité des interfaces qui ont été caractérisées à chaque étape du procédé. L’ensemble de ces travaux ont permis la réalisation de dispositifs mémoire et de commutateurs RF fonctionnels à base de MoS2. Le comportement électrique de ces dispositifs a été étudié en fonction des différentes architectures proposées et des différents procédés d’intégration afin d’identifier les paramètres d’intégration important. Les résultats montrent que l’optimisation du procédé, tant par la prise en compte de la gestion de la contamination que par la nature des matériaux utilisés ou encore la qualité du transfert permettent d’améliorer le rendement et la reproductibilité, offrant des nouvelles pistes d’intégration pour améliorer les performances des dispositifs futurs.