Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
L'Institut de recherche interdisciplinaire de Grenoble (Irig) est un institut thématique de la Direction de la Recherche Fondamentale du CEA.
Notre Institut est composé de 5 départements
Les 10 Unités Mixtes de Recherches de l'Irig
Agenda
Soutenance de thèse
Vendredi 10 octobre à 14:00, Bâtiment 10.05, Salle 445, CEA Grenoble
The explosive growth of data and sub-10 nm transistor scaling have driven up chip power, making it attractive to bring non-volatile memory closer to the CPU. Magnetic random-access memory (MRAM), based on magnetic tunnel junctions, is a leading contender. While STT-MRAM is already in production, spin–orbit torque MRAM (SOT-MRAM), based on spin currents from the spin Hall and Rashba effects, offers faster sub-nanosecond switching and superior endurance. A key challenge, however, is deterministic switching. Even with external fields, write probability can collapse at high currents due to intrinsic backswitching. We systematically investigate this phenomenon in sub-100 nm CoFeB pillars on β-W using statistical measurements and macrospin simulations that reproduce experiments. The results suggest practical mitigation strategies, including free layers with high damping, interface engineering to tune the field-like/damping-like torque balance, and tailored pulse shapes. To eliminate the external-field requirement, we examine combined SOT and STT writing. While this boosts practicality, it introduces reliability concerns linked to reference-layer imperfections. Through write error rate (WER) experiments and improved stack, we identify optimal pulsing strategies and demonstrate low WER at sub-critical currents. We also disentangle contributions from stray fields, VCMA, STT, and Joule heating, and highlight the fundamental difference in symmetry-breaking mechanisms of external field and STT. Finally, we explore orbital torques in Co/Pt/Ta trilayers, revealing a damping-like torque efficiency more than twice that of Co/Pt, which increases with temperature, alongside a sizable field-like component. By decoupling spin and orbital contributions, we uncover their relaxation mechanisms. These results highlight new pathways toward robust, deterministic, and energy-efficient SOT-MRAM. Plus d'information :https://www.spintec.fr/phd-defense-by-kuldeep-ray-development-of-sot-mram-technology-for-integration-in-functional-devices/ Pour suivre la soutenance en visioconférence : https://cnrs.zoom.us/j/98644075579?pwd=0o4l1QT16KpPU3u3taN8kGQblIk4K3.1
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.