Vous êtes ici : Accueil > Découvrir et Comprendre > Les thèmes > L'ADN : déchiffrer pour mieux comprendre le vivant

Dossier multimédia | Livret thématique | Santé & sciences du vivant | ADN | Génomique

L'ADN : déchiffrer pour mieux comprendre le vivant

Mutations et réparation de l'ADN


​La molécule d'ADN subit en permanence des attaques physiques, chimiques ou biologiques. Plusieurs systèmes de réparation veillent sur l'intégrité du patrimoine génétique. 

Publié le 25 janvier 2018

Les différents types de mutations,
les agents mutagènes

Les mutations génétiques

Au moment de la division, la cellule déclenche le processus de réplication de l’ADN pour en obtenir une copie. De temps en temps, le système produit quelques erreurs : ce sont les mutations. Le plus souvent, elles sont sans conséquence, puisqu’il y a 98 % de chances qu’elles tombent dans une partie du génome qui ne code pas pour la synthèse d’une protéine (ADN non-codant).

D’autres mutations, en revanche, peuvent modifier la composition ou la quantité d’une protéine et être à l’origine d’une maladie génétique. Parmi les différents types de mutations, certaines sont ponctuelles avec perte, addition, ou substitution d’une seule base. Mais elles peuvent aussi concerner des zones plus larges et occasionner de plus grandes perturbations. 


Les agents mutagènes

Recherche d'anomalies chromosomiques par microscopie à fluorescence.

Recherche d'anomalies chromosomiques par microscopie à fluorescence. © P.Stroppa/CEA



D’autres sources, environnementales ou liées aux activités de l’Homme, peuvent également modifier l’ADN. Les facteurs mutagènes sont biologiques, physiques ou chimiques. La Nature s’est dotée d’agents particulièrement efficaces, les virus, dont certains peuvent tuer. Les rayons UV, X et la radioactivité sont des agents physiques à la méthode radicale : ils cassent la molécule d’ADN. Quant aux agents mutagènes chimiques, ils sont légions ; par exemple : le benzopyrène, présent dans la fumée de cigarette, le trichloréthylène, utilisé comme solvant dans les pressings... 


VidéoGènes de prédisposition et environnement



Stress cellulaire et réponse aux agressions

Autonome, la cellule n'en dépend pas moins de son environnement, des cellules qui l'entourent et du milieu dans lequel elle vit. À chaque minute, elle défend son équilibre et son intégrité. Elle fait face aux situations de stress grâce à des voies de signalisation qui lui permettent d'identifier son agresseur et de vérifier l'intégrité de son système. Selon l'importance des dommages, elle décide alors de se réparer ou de se donner la mort. 


Les signaux d'alerte

Par quoi une cellule peut-elle être stressée ? Une infection virale ou bactérienne, des produits toxiques, des rayonnements (UV, ionisants, rayons X…), des mutations génétiques, le manque d'eau ou de nutriments… La cellule contrôle un très grand nombre d'informations qu'elle reçoit de son environnement et de son propre système. Sa survie dépend de sa capacité à s'informer de façon continue. Quand les signaux témoignent d'un problème, par exemple des cassures double-brin dues à des rayonnements ionisants, un système d'alerte se déclenche. Les voies de signalisation sont nombreuses, complexes et encore peu connues. 


La réparation de l'ADN

Lorsque la cellule a évalué les dégâts comme modérés, une voie de réparation, spécifique pour chaque type de dommage, est activée. Dans le cas de cassures double-brin par exemple, des protéines se chargent de la réparation. Mais cela peut parfois générer des mutations et mener jusqu'à une instabilité génétique et au développement d'un cancer. Pour étudier ces mécanismes de réparation, il existe un modèle tout à fait intéressant : la bactérie Deinococcus deserti

Elle tolère des doses très élevées de radiations gamma et UV et de longues périodes de déshydratation extrême. Cette extrême tolérance est liée à la réparation très efficace de dommages massifs de l'ADN, notamment des cassures double-brin qui sont létales chez la plupart des organismes. Un ensemble de processus, à la fois actifs (réparation efficace de l'ADN) et passifs (super-compaction de l'ADN, protection des protéines contre l'oxydation) contribuent à sa radio-tolérance. 


La mort programmée 

Une cellule se sacrifie pour l'organe et l'organisme. En cas de réparation difficile ou impossible, elle déclenche son apoptose. Cette mort cellulaire, contrairement à la nécrose, est programmée. Elle se déroule suivant un enchaînement de phénomènes complexes : la chromatine se condense et la cellule se fragmente en corps dits apoptotiques qui sont ensuite détruits. Les étapes de déclenchement sont contrôlées par 3 gènes et les différentes phases de la destruction cellulaire seraient contrôlées par une dizaine d'autres. Que se passe-t-il en cas de dysfonctionnement de ce processus ? L'équilibre entre croissance et mort cellulaire est rompu, l'intégrité de l'organisme n'est plus assurée. Dans le cas d'une prolifération des cellules néfastes, l'organisme peut développer un cancer. La stimulation de l'apoptose, quant à elle, peut conduire l'organisme à se retourner contre lui-même. C'est le cas pour le Sida qui affaiblit par pyroptose accrue des lymphocytes TCD4, diminue les défenses immunitaires de l'organisme et prépare un terrain favorable à des maladies opportunistes. 

Cellules testiculaires de rat adulte après une irradiation à l'âge foetal. De nombreuses cellules en apoptose sont repérées.

Cellules testiculaires de rat adulte après une irradiation à l'âge foetal. De nombreuses cellules en apoptose sont repérées. © CEA