You are here : Home > The Institute > News > PET reveals brain damage related to alcohol

Scientific result | Brain | Positron Emission Tomography

PET reveals brain damage related to alcohol


​A Research Team from the SHFJ (IMIV) highlights, through a preclinical model of exposure to alcohol, an immediate and persistent neuro-immune response, several months after the initial exposure of alcohol. These results confirm the occurrence of brain damage that may play a key role in the neurological deficits reported in teenagers who like "binge-drinking", that is to say an excessive consumption of alcohol over a very short time.

Published on 7 November 2017

Abstract

The effects of acute alcohol exposure to the central nervous system are hypothesized to involve the innate immune system. The neuroimmune response to an initial and acute alcohol exposure was investigated using translocator protein 18 kDa (TSPO) PET imaging, a non-invasive marker of glial activation, in adolescent baboons. Three different alcohol-naive adolescent baboons (3–4 years old, 9 to 14 kg) underwent 18F-DPA-714 PET experiments before, during and 7–12 months after this initial alcohol exposure (0.7–1.0 g/l). The brain distribution of 18F-DPA-714 (VT; in ml/cm3) was estimated in several brain regions using the Logan plot analysis and the metabolite-corrected arterial input function. Compared with alcohol-naive animals (VTbrain = 3.7 ± 0.7 ml/cm3), the regional VTs of 18F-DPA-714 were significantly increased during alcohol exposure (VTbrain = 7.2 ± 0.4 ml/cm3p < 0.001). Regional VTs estimated several months after alcohol exposure (VTbrain = 5.7 ± 1.4 ml/cm3) were lower (p < 0.001) than those measured during alcohol exposure, but remained significantly higher (p < 0.001) than in alcohol-naive animals. The acute and long-term effects of ethanol exposure were observed globally across all brain regions. Acute alcohol exposure increased the binding of 18F-DPA-714 to the brain in a non-human primate model of alcohol exposure that reflects the 'binge drinking' situation in adolescent individuals. The effect persisted for several months, suggesting a 'priming' of glial cell function after initial alcohol exposure.

Read the French version.

Top page