Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les instructions pour activer JavaScript dans votre navigateur Web.
Direction de la recherche fondamentale
Présentation de la Direction de la recherche fondamentale : missions, instituts, chiffres clés, ...
Vous voulez participer au développement de la recherche dans le domaine de la santé, des bioénergies, des énergies,de la physique, de la chimie, des sciences du vivant ? Vous souhaitez un parcours professionnel motivant dans une communauté scientifique pluridisciplinaire ? Rejoignez les équipes de la DRF, ouvertes à la fois sur la recherche internationale et le monde industriel.
Toutes les vidéos disponibles sur ces pages, formats et contenus détaillé sur chaque élément multimédia
Des milliers de fois plus petits que les capteurs magnéto-résistifs classiques, les nouveaux capteurs conçus par l’Irig à l’aide de jonctions tunnel à transfert de spin bénéficient d’une sensibilité élevée sans limitation de la plage de mesure. Une technologie attractive pour l’industrie, et en particulier, le secteur automobile.
Des chercheurs du CEA-Irig et de l’Unité mixte de physique CNRS-Thales proposent une nouvelle approche spintronique utilisant la ferroélectricité. Elle permet pour la première fois de manipuler des courants de spin à l’aide d’interfaces non-magnétiques, contrôlées par des champs électriques. Résultat : une réduction potentielle d’un facteur mille de la consommation électrique de dispositifs spintroniques non volatils !
Des chercheurs du CEA-Irig et leurs partenaires révèlent pour la première fois un effet de magnétorésistance unidirectionnelle dans le germanium, un semi-conducteur utilisé en microélectronique. Cet effet déjà observé dans deux matériaux non magnétiques est ici cent fois plus intense. Une voie s’ouvre pour le transistor à spin !
Une collaboration impliquant l’Iramis-Cimap et la Direction des énergies du CEA montre qu’il est possible de modifier de manière contrôlée l’ordre cristallin du silicium, en combinant une irradiation par faisceaux d’ions basse et haute énergies. Une nouvelle piste pour façonner des semi-conducteurs !
Pour la première fois, des chimistes de l’ICSM (Institut de Chimie Séparative de Marcoule) et leurs partenaires sont parvenus à expliquer le comportement en synergie de molécules extractantes en décrivant la formation d’agrégats dynamiques et polymorphes (ienaïque) à partir de ces molécules. Cette avancée protégée par un brevet ouvre désormais la voie à d’innombrables innovations plus respectueuses de l’environnement, pour le recyclage des métaux ou l’industrie pharmaceutique notamment.
Un nouveau matériau d’électrode pour supercondensateurs a été développé par l’Iramis et ses partenaires : composé de « tapis » de nanotubes de carbone alignés sur feuille d’aluminium, il devrait permettre d’augmenter significativement la puissance électrique stockée. Un résultat indispensable à l’industrialisation portée par la start-up NawaTechnologies.
Des chercheurs de l’Irig sont parvenus à optimiser la conversion spin-charge dans un empilement comprenant une couche ferromagnétique en titanate de strontium. Cet effet produit dans un gaz bidimensionnel d'électrons, six fois plus important que l’état de l’art, pourrait s’appliquer à la lecture d'informations basée sur le spin dans de nouvelles conceptions de mémoires et de transistors.
Après avoir obtenu une première émission laser infrarouge à 230 K (- 43°C) dans une nanostructure en alliage germanium-étain, des chercheurs de l’Irig élargissent la gamme de fréquences de l’émission et élèvent la température de fonctionnement à 273 K (0°C).
Sensibles et peu coûteux, les capteurs à magnétorésistance géante (GMR) s’invitent dans les biopuces pour détecter une à une des cibles biologiques individuelles, marquées magnétiquement. Cette innovation conjointe de l’Iramis et de l’Institut Joliot intéresse la défense, l’environnement et la santé.
Une collaboration menée par l’Irig a développé un procédé d’électro-fonctionnalisation prometteur pour la biodétection et l’a appliqué à un micropore planaire capable d’immobiliser et détecter une cellule par électrochimiluminescence.
Des chercheurs de l’Irig en collaboration avec le CEA-Leti et l’Institut Néel (Université Grenoble Alpes) viennent de démontrer une nouvelle méthode de lecture d’un bit quantique, compatible avec une intégration à grande échelle.
Haut de page
Acteur majeur de la recherche, du développement et de l'innovation, le CEA intervient dans quatre grands domaines : énergies bas carbone, défense et sécurité, technologies pour l’information et technologies pour la santé.